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Foreword
I am happy to know that Soheil, who I have seen grow as an MVP with expert knowledge 
of Power BI, has authored this hands-on book that covers a range of topics. Learning 
by example is something every committed student wants to do. The effort needed to go 
through online documentation and extract useful information can be prohibitive. Many 
students can become frustrated during the process and leave the task unfinished because  
it is easy for any beginner to lose sight of the learning task while trying to find good,  
real-world, example-based content.

Soheil's book includes many resources from beginner to expert level for Power BI.  
Power BI is the leading platform and tool for enterprise and self-service BI. It is a joy  
to use and is very flexible. This book is appealing both to beginners and to experts who 
build systems for thousands of users. I'm happy to recommend Soheil's book to any 
enthusiast, regardless of their level of expertise. His book navigates the world of Power BI 
in a very engaging way. It starts from the basic building blocks and elaborates on many 
aspects of data modeling, including star schema, managing bi-directional relationships, 
many-to-many relationships, calculated tables, preparing the data structure in Power 
Query to achieve a star schema design, RLS, OLS, and composite models. Any student will 
appreciate the hands-on approach of this book. Every concept is explained with examples.

Christian Wade

Principal Program Manager, Microsoft
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Preface
Microsoft Power BI is one of the most popular business intelligence tools available on 
the market for desktop and the cloud. This book will be your guide to understanding the 
ins and outs of data modeling and how to create data models using Power BI confidently. 
You'll learn how to connect data from multiple sources, understand data, define and 
manage the relationships between data, and shape data models. 
In this book, you'll explore how to use data modeling and navigation techniques to define 
relationships and create a data model before defining new metrics and performing custom 
calculations using modeling features. As you advance through the chapters, the book 
will demonstrate how to create full-fledged data models, enabling you to create efficient 
data models and simple DAX code with new data modeling features. With the help of 
examples, you'll discover how you can solve business challenges by building optimal data 
models and changing your existing data models to meet evolving business requirements. 
Finally, you'll learn how to use some new and advanced modeling features to enhance 
your data models to carry out a wide variety of complex tasks. By the end of this Power 
BI book, you'll have gained the skills you need to structure data coming from multiple 
sources in different ways to create optimized data models that support reporting and  
data analytics.

Who this book is for
This Power BI book is for BI users, data analysts, and analysis developers who want to 
become well-versed in data modeling techniques to make the most of Power BI. Basic 
knowledge of Power BI and star schema will help you to understand the concepts covered 
in this book.



viii     Preface

What this book covers
Chapter 1, Introduction to Data Modeling in Power BI, briefly describes different 
functionalities of Power BI and why data modeling is important. This chapter also reveals 
some important notes to be considered around Power BI licensing, which potentially 
could affect your data model. This chapter introduces an iterative data modeling approach, 
which guarantees an agile Power BI implementation.

Chapter 2, Data Analysis eXpressions and Data Modeling, does not discuss a lot of DAX 
as in parts 3 and 4 of this book DAX is heavily used to solve different data modeling 
challenges. Therefore, we'll only focus on the DAX functionalities that are harder to 
understand and are very relevant to data modeling. This chapter starts with a quick 
introduction to DAX, then we jump straight to virtual tables and time intelligence 
functionalities and their applications in real-world scenarios.

Chapter 3, Data Preparation in Power Query Editor, quickly explains the components of 
Power Query and their application. It expresses the emphasis of creating query parameters 
and user-defined functions along with real-world use cases and scenarios to demonstrate 
how powerful they are in building much more flexible and maintainable models. 

Chapter 4, Getting Data from Various Sources, explains getting data from different data 
sources that are more commonly used in Power BI. Then, the importance of data source 
certification is explained, which helps you set your expectations on the type of data you're 
going to deal with. This is especially helpful in estimating data modeling efforts. Different 
connection modes are also explained in this chapter.

Chapter 5, Common Data Preparation Steps, explains common data preparation steps 
along with real-world hands-on scenarios. A combination of what you have learned so far 
in this book with the steps to be discussed in this chapter gives you a strong foundation to 
go on to the next chapters and build your data models more efficiently. By learning these 
functionalities, you can deal with a lot of different scenarios in implementing different 
data models.

Chapter 6, Star Schema Preparation in Power Query Editor, explains how to prepare your 
queries based on the star schema data modeling approach with real-life scenarios. The 
Power Query M language will be heavily used in this chapter, so you will learn how to 
deal with real-world challenges along the way. As you have already learned common 
data preparation steps in the previous chapter, the majority of Power Query scenarios 
explained in this chapter will be easier to implement. You'll also learn how to build 
dimension tables and fact tables, and how to denormalize your queries when needed. 
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Chapter 7, Data Preparation Common Best Practices, explains common best practices 
in data preparation. Following these practices will help you build more efficient data 
models that are easier to maintain and more flexible to make changes to. Following these 
practices, you can also avoid common mistakes, which can make your life much easier.

Chapter 8, Data Modeling Components, explains data modeling components from a Power 
BI perspective along with real file examples. In this chapter, we heavily use DAX when 
applicable so having a basic understanding of DAX is essential. We also have a complete 
star schema model in Power BI. The concept of config tables is covered, which unlocks a 
lot of possibilities in handling more complex business logic in the data model. The chapter 
ends with data modeling naming conventions.

Chapter 9, Star Shema and Data Modeling Common Best Practices, explains common data 
modeling best practices to help you make better decisions while building your data model 
to prevent facing some known issues down the road. For instance, dealing with data type 
issues in key columns that are used in relationships is somewhat time-consuming to 
identify, but it's very easy to prevent. So, knowing data modeling best practices helps you 
save a lot of maintenance time and consequently saves you money.

Chapter 10, Advanced Data Modeling Techniques, explains special modeling techniques 
that solve special business requirements. A good data modeler is one who is always open 
to new challenges. You may face some of the advanced business requirements discussed in 
this chapter or you may face something different but similar. The message we want to send 
in this chapter is to think freely when dealing with new business challenges and try to be 
innovative to get the best results.

Chapter 11, Row-Level Security, explains how to implement row-level security (RLS) 
in a Power BI data model. Dealing with RLS can be complex and knowing how to deal 
with different situations needs deep knowledge on data modeling and filter propagation 
concepts. Our aim in this chapter is to transfer that knowledge to you so you can design 
and implement high-performing and low-maintenance data models.

Chapter 12, Extra Options and Features Available for Data Modeling, introduces data 
modeling options such as Slowly Changing Dimensions (SCD), Object-Level Security 
(OLS), dataflows, and composite models, giving you broad exposure to all those topics.



x     Preface

To get the most out of this book
You will need to download and install the latest version of Power BI Desktop. All 
expressions have been tested in the March release of Power BI Desktop and will work in 
the later versions released on later dates. In addition to Power BI Desktop, you will need  
to install and use DAX Studio and Tabular Editor.
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Note
Since January 31, 2021, Power BI Desktop is no longer supported on  
Windows 7.

In some chapters, you may need to have a Power BI Service account. You can sign up for  
a Power BI Service as an individual. Read more here: https://docs.microsoft.
com/en-us/power-bi/fundamentals/service-self-service-signup-
for-power-bi?WT.mc_id=5003466.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

This book assumes that you are familiar with data warehousing and star schema terminology 
. However, the book tries to give a brief explanation of some terminologies when required.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI. 
In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800205697_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "The Customertable is wide and tall."

https://docs.microsoft.com/en-us/power-bi/fundamentals/service-self-service-signup-for-power-bi?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/fundamentals/service-self-service-signup-for-power-bi?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/fundamentals/service-self-service-signup-for-power-bi?WT.mc_id=5003466
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800205697_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800205697_ColorImages.pdf
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A block of code is set as follows:

Sequential Numbers = 

SELECTCOLUMNS(

    GENERATESERIES(1, 20, 1)

    , "ID"

    , [Value]

    )

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"Click New table from the Modeling tab."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
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Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com




Section 1:  
Data Modeling in 

Power BI

In this section, we quickly introduce data modeling in Power BI from a general point of 
view. We assume you know what Power Query is, what DAX is, and that you know the 
basic concepts of the star schema. In this section, you will learn about virtual tables and 
time intelligence functionalities in DAX and how you can implement a powerful model 
with real-world scenarios.

This section comprises the following chapters:

• Chapter 1, Introduction to Data Modeling in Power BI 

• Chapter 2, Data Analysis eXpressions and Data Modeling 





1
Introduction to  

Data Modeling in 
Power BI

Power BI is not just a reporting tool that someone uses to build sophisticated reports; it 
is a platform supplying a wide range of features from data preparation to data modeling 
and data visualization. It is also a very well-designed ecosystem, giving a variety of users 
the ability to contribute to their organization's data analysis journey in many ways, from 
sharing datasets, reports, and dashboards to using their mobile phones to add some 
comments to a report, ask questions, and circulate it back to relevant people. All of this 
is only possible if we take the correct steps in building our Power BI ecosystem. A very 
eye-catching and beautiful report is worth nothing if it shows incorrect business figures  
or if the report is too slow to render so the user does not really have the appetite to use it.

One of the most important aspects of building a good Power BI ecosystem is getting the 
data right. In real-world scenarios, you normally get data from various data sources. 
Getting data from the data sources and mashing it up is just the beginning. Then you need 
to come up with a well-designed data model that guarantees you always represent the 
right figures supporting the business logic so the report performs well. 



4     Introduction to Data Modeling in Power BI 

In this chapter, we'll start by learning about the different Power BI layers and how data 
flows between the different layers to be able to fix any potential issues more efficiently. 
Then, we'll study one of the most important aspects of Power BI implementation, that 
is, data modeling. You'll learn more about data modeling limitations and availabilities 
under different Power BI licensing plans. Finally, we'll discuss the iterative data modeling 
approach and its different phases.

In this chapter, we'll cover the following main sections:

• Power BI Desktop layers

• What data modeling means in Power BI

• Power BI licensing considerations for data modeling

• The iterative data modeling approach

Understanding the Power BI layers
As stated before, Power BI is not just a reporting tool. As the focus of this book is data 
modeling, we would rather not explain a lot about the tool itself, but there are some 
concepts that should be pointed out. When we talk about data modeling in Power BI, 
we are indeed referring to Power BI Desktop as our development tool. You can think of 
Power BI Desktop like Visual Studio when developing an SQL Server Analysis Services 
(SSAS) Tabular model. Power BI Desktop is a free tool offering from Microsoft that can 
be downloaded from https://powerbi.microsoft.com/en-us/downloads/. 
So, in this book, we're referring to Power BI Desktop when we say Power BI unless stated 
otherwise.

The following illustration shows a very simple process we normally go through while 
building a report in Power BI Desktop:

Figure 1.1 – Building a new report process in Power BI

To go through the preceding processes, we use different conceptual layers of Power BI. 
You can see those layers in Power BI Desktop as follows:

https://powerbi.microsoft.com/en-us/downloads/
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Figure 1.2 – Power BI layers

Download the Microsoft Contoso Sales sample for Power BI Desktop from https://
www.microsoft.com/en-us/download/confirmation.aspx?id=46801.

Let's discuss each point in detail:

• The Power Query (data preparation) layer

• The data model layer

• The data visualization layer

https://www.microsoft.com/en-us/download/confirmation.aspx?id=46801
https://www.microsoft.com/en-us/download/confirmation.aspx?id=46801
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The data preparation layer (Power Query)
In this layer, you get data from various data sources, transform and cleanse that data, and 
make it available for other layers. This is the very first layer that touches your data, so it 
is a very important part of your data journey in Power BI. In the Power Query layer, you 
decide which queries load data into your data model and which ones will take care of data 
transformation and data cleansing without loading the data into the data model:

Figure 1.3 – Power Query

The data model layer
This layer has two views, the Data view and the Model view. In the Data view, you can see 
the data, and in the Model view, you can see the data models.
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The Data view
After we are done with our data preparation in the Power Query layer, we load the data 
into the data model layer. Using the Data view, we can see the underlying data in our data 
model layer after it has been transformed in the data preparation layer. Depending on the 
connection mode, this view may or may not be accessible. While we can see the output 
of the data preparation, in this view we also take some other actions, such as creating 
analytical objects such as calculated tables, calculated columns, and measures, or copying 
data from tables.

Note
All objects we create in DAX are a part of our data model.

The following screenshot shows the Data view in Power BI Desktop when the storage 
mode of the table is set to Import:

Figure 1.4 – Data view; storage mode: Import
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The Data view tab does not show the underlying data if the table only shows the data 
when the storage mode is set to Import. If the storage mode is set to DirectQuery, the 
data will not be shown in the Data view:

Figure 1.5 – Data view; storage mode: DirectQuery
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The Model view
As its names implies, the Model view is where we stitch all the pieces together. Not only 
can we visually see how the tables are related in the model section, but also, we can create 
new relationships, format fields and synonyms, show/hide fields, and so on:

Figure 1.6 – Model view

The data visualization layer
In this layer, we bring the data to life by making meaningful and professional-looking data 
visualizations. This layer is accessible from the Report view, which is the default view in 
Power BI Desktop.
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The Report view
In the Report view, we can build storytelling visualizations to help businesses make  
data-driven decisions on top of their data. For more convenience, we also create analytical 
calculations with DAX, such as calculated tables, calculated columns, and measures from 
the Fields pane in the Report view, but this doesn't mean those calculation objects are  
a part of the data visualization layer. Indeed, those calculations are a part of the data 
model layer:

Figure 1.7 – The Report view

Download the Sales & Returns sample.pbix file from https://docs.microsoft.
com/en-us/power-bi/create-reports/sample-datasets#sales--
returns-sample-pbix-file.

https://docs.microsoft.com/en-us/power-bi/create-reports/sample-datasets#sales--returns-sample-pbix-file
https://docs.microsoft.com/en-us/power-bi/create-reports/sample-datasets#sales--returns-sample-pbix-file
https://docs.microsoft.com/en-us/power-bi/create-reports/sample-datasets#sales--returns-sample-pbix-file
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How data flows in Power BI
Understanding how data flows during its journey in Power BI is important from a 
maintenance perspective. For instance, when you see an issue with some calculations 
in a report, you'll know how to do a root cause analysis and trace the issue back to an 
actionable point. So, if you find an issue with a figure in a line chart and that line chart 
is using a measure that is dependent on a calculated column, you quickly know that you 
won't find that calculated column in Power Query as the objects created in the data model 
are not accessible in Power Query. So, in that sense, you will never look for a measure in 
the Power Query layer or vice versa, as you do not expect to be able to use user-defined 
functions in the data model layer. We will discuss custom functions in Chapter 3, Data 
Preparation in Power Query Editor, Custom Functions:

Figure 1.8 – The flow of data in Power BI

To understand this better, let's go through a scenario.

In a Power BI report, the developer has defined a query parameter. The parameter has  
a list of capital letters, E, O, and P. There is also a Product query in Power Query holding 
descriptive information about the product. The Product Name column is filtered by the 
parameters list. So, when the developer selects E from the parameter, the Product query 
filters the results showing only the products whose name starts with E.

You put a table visual on the report canvas with the Product Name column. Can you 
add a slicer to the report canvas showing the parameters' values so that the end user 
changes the values in the slicer and can see the changes in the table visual?
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This is a real-world question you may get from time to time from Power BI developers.  
To answer the question, you need to think about Power BI layers. Let's do some analysis:

• Query parameters are defined in the data preparation layer in Power Query.

• Filtering a query is also a transformation step in Power Query, which changes the 
result sets of the query. Therefore, when we import the data into the data model, 
the result sets will not change unless we go back to Power Query and change the 
parameters' values, which consequently changes the result sets of the Product 
query and imports the new result sets to the data model.

• By default, query parameters' values are not loaded into the data model unless the 
developer sets Enable load. Setting Enable load only loads the selected values from 
the parameters list and not the whole list.

• A slicer is a visual. So, now we are talking about the data visualization layer. This 
means the slicer can only get values available in the data model.

So, the answer is no. After importing the result sets of a query to the data model, that data 
will be accessible to the data visualization layer.

What data modeling means in Power BI
Data modeling is undoubtedly one of the most important parts of Power BI development. 
The purpose of data modeling in Power BI is different from data models in transactional 
systems. In a transactional system, the goal is to have a model that is optimized for 
recording transactional data. Nevertheless, a well-designed data model in Power BI must 
be optimized for querying the data and reducing the dataset size by aggregating that data. 

While not everyone has the luxury of having a prebuilt data warehouse, you end up 
creating a data model in Power BI in many cases. It is very tempting to get the whole data 
as is from various data sources and import it to Power BI. Answering business questions 
can quickly translate to complex queries that take a long time to process, which is not 
ideal. So, it is highly advised to resist the temptation to import everything from the data 
sources into Power BI and solve the problems later. Instead, it is wise to try to get your 
data model right so that it is capable of precisely answering business-driven questions 
in the most performant way. When modeling data in Power BI, you need to build a data 
model based on the business logic. Having said that, you may need to join different tables 
and aggregate your data to a certain level that answers all business-driven questions. It can 
get worse if you have data from various data sources of different grains representing the 
same logic.
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Therefore, you need to transform and reshape that data before loading it to the data model 
in Power BI. Power Query is the right tool to take care of all that. After we cut all the noise 
from our data, we have a clean, easy-to-understand, and easy-to-work-with data model.

Semantic model
Power BI inherits its blood from Power Pivot and SSAS Tabular models. All of them use 
the xVelocity engine, an updated version of the VertiPaq engine designed for in-memory 
data analysis and consisting of semantic model objects such as tables, relationships, 
hierarchies, and measures, which are stored in memory, leveraging column store indexing. 
All of this means that you would expect to get tremendous performance gains over highly 
compressed data, right? Well, it depends. If you efficiently transformed the data to support 
business logic, then you can expect to have fast and responsive reports. After you import 
your data into the data model in Power BI, you have built a semantic model when it comes 
to the concepts. A semantic model is a unified data model that provides business contexts 
to data. The semantic model can be accessed from various tools to visualize data without 
needing it to be transformed again. In that sense, when you publish your reports to the 
Power BI service, you can analyze the dataset in Excel or use third-party tools such as 
Tableau to connect to a Power BI dataset backed by a Premium capacity and visualize  
your data.

Building an efficient data model in Power BI
An efficient data model can quickly answer all business questions that you are supposed to 
answer; it is easy to understand and easy to maintain. Let's analyze the preceding sentence. 
Your model must do the following:

• Perform well (quickly)

• Be business-driven

• Decrease the level of complexity (be easy to understand)

• Be maintainable with low costs

Let's look at the preceding points with a scenario.

You are tasked to create a report on top of three separate data sources, as follows:

• An OData data source with 15 tables. The tables have between 50 and 250 columns.

• An Excel file with 20 sheets that are interdependent with many formulas.
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• A data warehouse hosted in SQL Server. You need to get data from five dimensions 
and two fact tables:

-  Of those five dimensions, one is a Date dimension and the other is a Time 
dimension. The grain of the Time dimension is hour, minute.

 -  Each of the fact tables has between 50 and 200 million rows. The grain of both fact 
tables from a date and time perspective is day, hour, minute.

 - Your organization has a Power BI Pro license.
There are already a lot of important points in the preceding scenario that you must 
consider before starting to get the data from the data sources. There are also a lot of points 
that are not clear at this stage. I have pointed out some of them:

• OData: OData is an online data source, so it could be slow to load the data from the 
source system.

The tables are very wide so it can potentially impact the performance.

Our organization has a Power BI Pro license, so we are limited to 1 GB file size.

The following questions should be answered by the business. Without knowing 
the answers, we may end up building a report that is unnecessarily large with poor 
performance. This can potentially lead to the customer's dissatisfaction:

(a) Do we really need to import all the columns from those 15 tables?

(b)  Do we also need to import all data or is just a portion of the data enough? In 
other words, if there is 10-years worth of data kept in the source system, does 
the business need to analyze all the data, or does just 1 or 2 years of data fit the 
purpose? 

• Excel: Generally, Excel workbooks with many formulas can be quite hard to 
maintain. So, we need to ask the following questions of the business:

(a)  How many of those 20 sheets of data are going to be needed by the business?  
You may be able to exclude some of those sheets.

(b)  How often are the formulas in the Excel file edited? This is a critical point as 
modifying the formulas can easily break your data processing in Power Query 
and generate errors. So, you would need to be prepared to replicate a lot of 
formulas in Power BI if needed.
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• Data warehouse in SQL Server: It is beneficial to have a data warehouse as a source 
system as data warehouses normally have a much better structure from an analytical 
viewpoint. But in our scenario, the finest grain of both fact tables is down to a 
minute. This can potentially turn into an issue pretty quickly. Remember, we have  
a Power BI Pro license, so we are limited to a 1 GB file size only. Therefore, it is wise 
to clarify some questions with the business before we start building the model:

(a)  Does the business need to analyze all the metrics down to the minute or is 
day-level enough?

(b)  Do we need to load all the data into Power BI, or is a portion of the data 
enough? 

We now know the questions to ask, but what if the business needs to analyze the 
whole history of the data? In that case, we may consider using composite models 
with aggregations.

Having said all that, there is another point to consider. We already have five 
dimensions in the data warehouse. Those dimensions can potentially be reused 
in our data model. So, it is wise to look at the other data sources and find 
commonalities in the data patterns. 

You may come up with some more legitimate points and questions. However, you can 
quickly see in the previously mentioned points and questions that you need to talk to 
the business and ask questions before starting the job. It is a big mistake to start getting 
data from the source systems before framing your questions around business processes, 
requirements, and technology limitations. There are also some other points that you need 
to think about from a project management perspective that are beyond the scope of  
this book. 

The initial points to take into account for building an efficient data model are as follows:

• We need to ask questions of the business to avoid any confusions and potential 
reworks in the future.

• We need to understand the technology limitations and come up with solutions.

• We have to have a good understanding of data modeling, so we can look for 
common data patterns to prevent overlaps.

At this point, you may think, "OK, but how we can get there?" My answer is that you have 
already taken the first step, which is reading this book. All the preceding points and more 
are covered in this book. The rest is all about you and how you apply your learning to your 
day-to-day challenges.
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Star schema (dimensional modeling) and snowflaking
First things first, star schema and dimensional modeling are the same things. In Power 
BI data modeling, the term star schema is more commonly used. So, in this book, we will 
use the term star schema. The intention of this book is not to teach you about dimensional 
modeling. Nevertheless, we'll focus on how to model data using star schema data 
modeling techniques. We will remind you of some star schema concepts.

Transactional modeling versus star schema modeling
In transactional systems, the main goal is to improve the system's performance in creating 
new records and updating/deleting existing records. So, it is essential to go through the 
normalization process to decrease data redundancy and increase data entry performance 
when designing transactional systems. In a straightforward form of normalization, we 
break tables down into master-detail tables.

But the goal of a business analysis system is very different. In business analysis, we need  
a data model optimized for querying in the most performant way.

Let's continue with a scenario.

Say we have a transactional retail system for international retail stores. We have hundreds 
of transactions every second from different parts of the world. The company owner wants 
to see the total sales amount in the past 6 months.

This calculation sounds easy. It is just a simple SUM of sales. But wait, we have hundreds 
of transactions every second, right? If we have only 100 transactions per second, then we 
have 8,640,000 transactions a day. So, for 6 months of data, we have more than 1.5 billion 
rows. Therefore, a simple SUM of sales will take a reasonable amount of time to process.

The scenario continues: Now, a new query comes from the business. The company owner 
now wants to see the total sales amount in the past 6 months by country and city. He 
simply wants to know what the best-selling cities are.

We need to add another condition to our simple SUM calculation, which translates 
to a join to the geography table. For those coming from a relational database design 
background, it will be obvious that joins are relatively expensive operations. This scenario 
can go on and on. So, you can imagine how quickly you will face a severe issue.

In the star schema, however, we already joined all those tables based on business entities. 
We aggregated and loaded the data into denormalized tables. In the preceding scenario, 
the business is not interested in seeing every transaction at the second level. We can 
summarize the data at the day level, which decreases the number of rows from 1.5 billion 
to a couple of thousands of rows for the whole 6 months. Now you can imagine how fast 
the summation would be running over thousands of rows instead of 1.5 billion rows. 
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The idea of the star schema is to keep all numeric values in separate tables called fact 
tables and put all descriptive information into other tables called dimension tables. 
Usually, the fact tables are surrounded by dimensions that explain those facts. When you 
look at a data model with a fact table in the middle surrounded by dimensions, you see 
that it looks like a star. Therefore, it is called a star schema. In this book, we generally use 
the Adventure Works DW data, a renowned Microsoft sample dataset, unless stated 
otherwise. Adventure Works is an international bike shop that sells products both online 
and in their retail shops. The following figure shows Internet Sales in a star schema shape:

Figure 1.9 – Adventure Works DW, Internet Sales star schema
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Snowflaking
Snowflaking is when you do not have a perfect star schema when dimension tables 
surround your fact tables. In some cases, you have some levels of descriptions stored 
in different tables. Therefore, some dimensions of your model are linked to some other 
tables that describe the dimensions in a greater level of detail. Snowflaking is normalizing 
the dimension tables. In some cases, snowflaking is inevitable; nevertheless, the general 
rule of thumb in data modeling in Power BI (when following a star schema) is to avoid 
snowflaking as much as possible. The following figure shows snowflaking in Adventure 
Works Internet Sales:

Figure 1.10 – Adventure Works, Internet Sales snowflakes



What data modeling means in Power BI     19

Understanding denormalization
In real-world scenarios, not everyone has the luxury of having a pre-built data warehouse 
designed in a star schema. In reality, snowflaking in data warehouse design is inevitable. 
So, you may build your data model on top of various data sources, including transactional 
database systems and non-transactional data sources such as Excel files and CSV files. 
So, you almost always need to denormalize your model to a certain degree. Depending 
on the business requirements, you may end up having some level of normalization along 
with some denormalization. The reality is that there is no specific rule for the level of 
normalization and denormalization. The general rule of thumb is to denormalize your 
model so that a dimension can describe all the details as much as possible.

In the preceding example from Adventure Works DW, we have snowflakes of 
Product Category and Product Subcategory that can be simply denormalized 
into the Product dimension.

Let's go through a hands-on exercise.

Go through the following steps to denormalize Product Category and Product 
Subcategory into the Product dimension.

Note
You can download the Adventure Works, Internet Sales.
pbix file from here:

https://github.com/PacktPublishing/Expert-Data-
Modeling-with-Power-BI/blob/master/Adventure%20
Works%20DW.pbix

Open the Adventure Works, Internet Sales.pbix file and follow these steps:

1. Click Transform data on the Home tab in the Queries section.

2. Click the Product Query.

3. Click Merge Queries on the Home tab in the Combine section.

4. Select Product Subcategory from the drop-down list.

5. Click ProductSubcategoryKey on the Product table.

6. Click ProductSubcategoryKey on the Product Subcategory table.

https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW.pbix
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW.pbix
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW.pbix
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7. Select Left Outer (all from first matching from the second) from the Join Kind 
dropdown. 

8. Click OK:

 

Figure 1.11 – Merging Product and Product Subcategory

This adds a new step named Merged Queries. As you see, the values of this column are 
all Table. This type of column is called Structured Column. The merging Product and 
Product Subcategory step creates a new structured column named Product Subcategory:

You will learn more about structured columns in Chapter 3, Data Preparation in Power 
Query Editor.
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Figure 1.12 – Merging the Product and Product Subcategory tables

Now let's look at how to expand a structured column in the query editor:

1. Click the Expand button to expand the Product Subcategory column.

2. Select ProductCategoryKey.

3. Select the EnglishProductSubcategoryName columns and unselect the rest.

4. Unselect Use original column names as prefix.

5. Click OK:

 

Figure 1.13 – Expanding Structured Column in the Query Editor
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So far, we have added the EnglishProductSubcategoryName and 
ProductCategoryKey columns from the Product Subcategory query to the 
Product query. The next step is to add EnglishProductCategoryName from the 
Product Category query. To do so, we need to merge the Product query with 
Product Category:

1. Click Merge Queries again.

2. Select Product Category from the drop-down list.

3. Select ProductCategoryKey from the Product table.

4. Select ProductCategoryKey from the Product Category table.

5. Select Left Outer (all from first matching from second).

6. Click OK:

 

Figure 1.14 – Merging Product and Product Category

This adds another step and a new structured column named Product Category. We 
now need to do the following:

1. Expand the new column. 

2. Pick EnglishProductCategoryName from the list.

3. Unselect Use original column name as prefix.

4. Click OK:



What data modeling means in Power BI     23

Figure 1.15 – Merging Product and Product Category

The next step is to remove the ProductCategoryKey column as we do not need it 
anymore. To do so, do the following:

1. Click on the ProductCategoryKey column.

2. Click the Remove Columns button in the Managed Column section of the  
Home tab:

Figure 1.16 – Removing a column in the Query Editor
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Now we have merged the Product Category and Product Subcategory 
snowflakes with the Product query. So, you have denormalized the snowflakes.

The very last step is to unload both the Product Category and Product 
Subcategory queries:

1. Right-click on each query.

2. Untick Enable load from the menu.

3. Click Continue on the Possible Data Loss Warning pop-up message:

Figure 1.17 – Unloading queries in the Query Editor
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Now we need to import the data into the data model by clicking Close & Apply:

 

Figure 1.18 – Importing data into the data model

We have now achieved what we were after: we denormalized the Product 
Category and Product Subcategory tables, therefore rather than loading 
those two tables, we now have EnglishProductCategoryName and 
EnglishProductSubcategoryName represented as new columns in the Product 
table. 

Job done!

Power BI licensing considerations
At this point, you may be wondering how Power BI licensing affects data modeling. It 
does, as each licensing tier comes with a set of features that can potentially affect the data 
modeling. Nevertheless, regardless of the licensing tier you are using, Power BI Desktop is 
free of charge. In this section, we'll quickly look at some licensing considerations related to 
data modeling.
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The following table is a simplified version of the Power BI feature comparisons published 
on the Microsoft website separately based on different licenses:

Figure 1.19 – A simplified version of Power BI feature comparisons

Maximum size of individual dataset
As the table illustrates, we are limited to 1 GB for each dataset published to the Power 
BI service under Free or Professional licensing. Therefore, managing the file size is quite 
important. There are several ways to keep the file size just below the limit, as follows:

• Import the necessary columns only.

• Import just a portion of data when possible. Explain the technology limitation to 
the business and ask whether you can filter out some data. For instance, the business 
may not need to analyze 10 years of data, so filter older data in Power Query.

• Use aggregations. In many cases, you may have the data stored in the source at  
a very low granularity. However, the business requires data analysis on a higher 
grain. Therefore, you can aggregate the data to a higher granularity, then import  
it into the data model. For instance, you may have data stored at a minute level.  
At the same time, the business only needs to analyze that data at the day level. 
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• Consider disabling auto date/time settings in Power BI Desktop.

• Consider optimizing data types.

We will cover all the preceding points in the upcoming chapters.

Incremental data load
One of the coolest features available in Power BI is the ability to set up an incremental 
data load. Incremental data loading in Power BI is inherited from SSAS to work with large 
models. When it is set up correctly, Power BI does not truncate the dataset and re-import 
all the data from scratch. Instead, it only imports the data that has been changed since 
the last data refresh. Therefore, incremental data load can significantly improve the 
data refresh performance and decrease the amount of processing load on your tenant. 
Incremental data load is available in both Professional and Premium licenses.

Calculation groups
Calculation groups are like calculated members in MultiDimensional eXpressions 
(MDX). Calculation groups were initially introduced in SSAS 2019 Tabular models.  
They are also available in Azure Analysis Services and all Power BI licensing tiers. 

It is a common scenario that you create (or already have) some base measures in your 
Power BI model and then create many time intelligence measures on top of those base 
measures. In our sample file, we have three measures, as follows:

• Product cost: SUM('Internet Sales'[TotalProductCost])

• Order quantity: SUM('Internet Sales'[OrderQuantity])

• Internet sales: SUM('Internet Sales'[SalesAmount])

The business requires the following time intelligence calculations on top of all the 
preceding measures:

• Year to date

• Quarter to date

• Month to date

• Last year to date

• Last quarter to date

• Last month to date
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• Year over year

• Quarter over quarter

• Month over month

We have nine calculations to be built on top of every single measure we have in our model. 
Hence, we end up having 9 x 3 = 27 measures to build in our model. You can imagine how 
quickly the number of measures can rise in the model, so you should not be surprised if 
someone tells you that they have hundreds of measures in their Power BI model. 

Another common scenario is when we have multiple currencies. Without calculation 
groups, you need to convert the values into strings to show the figures and use a relevant 
currency symbol using the FORMAT() function in DAX. Now, if you think about the 
latter point, combined with time intelligence functions, you can see how the issue can get 
bigger and bigger.

Calculation groups solve those sorts of problems. We cover calculation groups in Chapter 
10, Advanced Data Modeling Techniques.

Shared datasets
As the name implies, a shared dataset is a dataset used across various reports in a modern 
workspace (a new workspace experience) within the Power BI service. Therefore, it is only 
available in the Power BI Professional and Power BI Premium licensing plans. This feature 
is quite crucial to data modelers. It provides more flexibility in creating a more generic 
dataset, covering more business entities in a single dataset instead of having several 
datasets that may share many commonalities.

Power BI Dataflows
Dataflows, also referred to as Power Query Online, provide a centralized data preparation 
mechanism in the Power BI service that other people across the organization can take 
advantage of. Like using Power Query in Power BI Desktop for data preparation, we can 
prepare, clean, and transform the data in dataflows. Unlike Power Query queries, which 
are isolated within a dataset, when created in Power BI Desktop and then published 
to the Power BI service, you can share all data preparations, data cleansing, and data 
transformation processes across the organization with dataflows.

You can create Power BI dataflows inside a workspace, so it is only available to 
Professional and Premium users. We will also cover Power BI dataflows in future chapters.
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The iterative data modeling approach
Like many other software development approaches, data modeling is an ongoing process. 
You start talking to the business, then apply the business logic to your model. You carry 
on with the rest of your Power BI development. In many cases, you build your data 
visualizations and then find out that you will get better results if you make some changes 
in your model. In many other cases, the business logic applied to the model is not what 
the business needs. This is a typical comment that many of us will get from the business 
after the first few iterations:

This looks really nice, but unfortunately, it is not what we want.

So, taking advantage of an agile approach would be genuinely beneficial for Power BI 
development. Here is the iterative approach you can follow in your Power BI development:

Figure 1.20 – The iterative data modeling approach
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Information gathering from the business
Like all other software development processes, a Power BI development process starts 
with gathering information from the business to get a better understanding of the business 
requirements. A business analyst may take care of this step in the real world but wait, 
a lot of Power BI users are business analysts. Regardless of your role, whether you are a 
business analyst or a business analyst takes care of this step and you are a data modeler, 
you need to analyze the information you get from the business. You have to ask relevant 
questions and come up with a list of design possibilities. You have to identify potential 
risks and discuss them with the customer. You also need to be aware of technology 
limitations and discuss them with the customer as well. After you get answers to your 
questions and have a list of design possibilities, risks, and technology limitations, you can 
move on to the next step more confidently.

Data preparation based on the business logic
You now have a lot on your plate. You need to get the data from various data sources and 
go through the data preparation steps. Now that you know a lot about business logic, 
you can take the proper steps in your data preparation. For instance, if the business 
requires you to connect to an OData data source and get a list of the columns required 
by the business, you can prepare your data more efficiently with all the design risks and 
technology limitations in mind. After you have consciously prepared your data, you will 
go on to the next step, which is data modeling.

Data modeling
If you took the proper actions in the previous steps, your data model will be much 
tidier, so you can build your model more efficiently. Now you need to think about the 
analytical side of things. Simultaneously, you still have all the business requirements, 
design possibilities, risks, and technology limitations in mind. For instance, if the business 
cannot tolerate data latency longer than 5 minutes, you may need to think about using 
DirectQuery. Using DirectQuery comes with some limitations and performance risks. 
So, you need to think about the design approach that satisfies the business requirements 
the most. We cover DirectQuery in Chapter 4, Getting Data from Various Sources in the 
Dataset storage modes section.
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Testing the logic
This is one of the most trivial and yet most important steps in data modeling: testing all 
the business logic you implement to meet the requirements. Not only do you need to test 
the figures to make sure the results are accurate, but you also need to test the solution 
from a performance and user experience perspective. Be prepared for tons of mixed 
feedback, and sometimes strong criticism from the end users, especially when you think 
everything is OK.

Demonstrating the business logic in a basic data 
visualization
As we are modeling the data, we do not need to be worried about the data visualization 
part. The fastest way to make sure all the business logic is right is to confirm with the 
business. The fastest way to do that is to demonstrate the logic in the simplest possible 
way, such as using table and matrix visuals and some slicers on the page. Remember, this 
is only to confirm the logic with the business, not the actual product delivery. There will 
be a lot of new information and surprises that come up during the demonstration in the 
real world, which means you'll then need to start the second iteration and gather more 
information from the business.

As you go through all the preceding steps several times, you'll gradually become  
a professional data modeler. In the next section, we'll quickly cover how professional data 
modelers think.

Note
This book also follows an iterative approach, so we'll go back and forth between 
different chapters to cover some scenarios. 
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Thinking like a professional data modeler
Back in the day, in the late 90s, I was working on transactional database systems. Back 
then, it was essential to know how to normalize your data model to at least the third 
normal form. In some cases, we were normalizing to the Boyce-Codd normal form.  
I carried out many projects facing a lot of different issues and I made many mistakes,  
but I learned from those mistakes. Gradually, I was experienced enough to visualize 
the data model to the second or sometimes even to the third normal form in my head 
while I was in a requirements gathering session with the customer. All data modeling 
approaches that I had a chance to work with, or read about, were based on relational 
models regardless of their usage, such as transactional models, star schema, Inmon, and 
data vault. They are all based on relational data modeling. Data modeling in Power BI is 
no different. Professional data modelers can visualize the data model in their minds from 
the first information-gathering sessions they have with the customer. But as mentioned, 
this capability comes with experience. 

Once you have enough experience in data modeling, you'll be able to ask more relevant 
questions from the business. You already know of some common scenarios and pitfalls, so 
you can quickly recognize other similar situations. Therefore, you can avoid many future 
changes by asking more relevant questions. Moreover, you can also give your customer 
some new ideas to solve other problems down the road. In many cases, the customer's 
requirements will change during the project lifetime. So, you will not be surprised when 
those changes happen.

Summary
In this chapter, we discussed the different layers of Power BI and what is accessible in 
which layer. Therefore, when we face an issue, we know exactly where we should look 
to fix the problem. Then we discussed how when we build a data model, we are indeed 
making a semantic layer in Power BI. We also covered some star schema and snowflaking 
concepts, which are essential to model our data more efficiently. We then covered different 
Power BI licensing considerations and how they can potentially affect our data modeling. 
Lastly, we looked at the data modeling iterative approach to deliver a more precise and 
more reliable data model that solves many problems that the report writers may face down 
the road.

In the next chapter, we will look at DAX and data modeling. We will discuss a somewhat 
confusing topic, virtual tables, and we will walk you through some common time 
intelligence scenarios to help you with your future data modeling tasks. 
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Data Analysis 

eXpressions and 
Data Modeling

We covered in the previous chapter that Power BI has different layers: data preparation, 
data modeling, and data visualization. This chapter discusses Data Analysis eXpressions 
(DAX), and it relates to data modeling. Although data modeling and DAX are connected 
such that you cannot imagine one without the other, our goal in this book is not to focus 
only on DAX. Data modeling encompasses much broader concepts, while DAX is the 
expression language that developers must use to implement business logic in the data 
model. Our assumption in this book is that you have basic to intermediate knowledge  
of DAX; therefore, we will not cover basic DAX concepts. Instead, we will focus on more 
advanced DAX concepts with hands-on scenarios. 

This chapter covers the following topics:

• Understanding virtual tables

• Relationships in virtual tables

• Time intelligence
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Understanding virtual tables
The concept of virtual tables in DAX is somewhat confusing and misunderstood, and yet 
is one of the most powerful and important concepts of DAX. When we talk about virtual 
tables, we are referring to in-memory tables that we build using certain DAX functions 
or constructors. The data in a virtual table is either derived from the data within the data 
model or the data that we construct for specific purposes. 

Remember, whenever we use a DAX function that results in a table of values, we are 
creating a virtual table. 

At this point, you may ask, so when I use a DAX function to create a calculated table, am I 
creating a virtual table? The answer is it depends. If you simply use a set of DAX functions 
that generate data or selectively load data from other tables into a calculated table, the 
answer is no: you have not created any virtual tables. Nevertheless, suppose you generate 
or load the data from other tables. In that case, you do some table operations with the data 
and load the results into a calculated table. Most probably, you created a virtual table and 
populated a calculated table with the results. Virtual tables, as the name implies, are not 
physically stored in the model. Therefore, we cannot see them, but they exist in memory 
as we create them within our calculations. Hence, they are only accessible within that 
calculation and not from other calculations or any other parts of our data model. If you 
are coming from a SQL development background, then you can think of DAX virtual 
tables as subqueries in SQL.

Is it still confusing? Let's continue with some hands-on scenarios.

Creating a calculated table
We will create a calculated table and name it Sequential Numbers with a column named 
ID. The ID column values are sequential numbers between 1 and 20, increasing by one 
step in each row:

1. Open a new Power BI Desktop instance.

2. Click New table from the Modeling tab:
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Figure 2.1 – Creating a calculated table in Power BI

3. Type the following DAX expression, then press Enter:

Sequential Numbers = GENERATESERIES(1, 20, 1)

This creates a calculated table named Sequential Numbers, as illustrated here, but 
the column name is Value, not ID:

Figure 2.2 – Using the GENERATESERIES() function to create a calculated table
The GENRATESERIES() function generates values for us. The output is a desirable 
table, but we need to do one last operation to rename the Values column to ID. 

4. Replace the previous expression with this expression, then press Enter:

Sequential Numbers = 

SELECTCOLUMNS(

    GENERATESERIES(1, 20, 1)

    , "ID"

    , [Value]

    )
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The following figure shows the results of the preceding calculation:

Figure 2.3 – Calculated table and virtual table
What we have done is that we first created a virtual table with a Values column. 
We renamed that column to ID, and finally, we populated a calculated table with  
the results.

In this scenario, we looked at the usage of virtual tables in calculated tables. In the 
following scenario, we demonstrate the usage of virtual tables in a measure.

Let's take a step further with a more complex scenario.

Using virtual tables in a measure – Part 1 
In the Adventure Works, Internet Sales.pbix sample, create a measure in the 
Internet Sales table to calculate the ordered quantities for products when their list 
price is higher than $1,000. Name the measure Orders with List Price Bigger 
than or Equal to $1,000:

Good practice
Always create a new measure by right-clicking on the desired table from the 
Fields pane and clicking New measure. This way, you are always sure that 
you create the measure in a specific desired table. If you use the New measure 
button from the Home tab from the ribbon, the new measure will be created 
in a table that you previously focused on. Suppose there is no table selected 
(focused on). In that case, the new measure will be created in the first table 
available in your data model, which is not ideal.

1. Right-click on the Internet Sales table.

2. Click New measure.
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3. Type the following DAX expression and press Enter:

Orders with List Price Bigger than or Equal to $1,000 = 

CALCULATE(

    SUM('Internet Sales'[OrderQuantity])

        , FILTER('Product'                  //Virtual 
table start

            , 'Product'[List Price]>=1000

                )                           //Virtual 
table end

        )

The following figure shows the preceding expression in Power BI Desktop:

Figure 2.4 – Calculating orders with a list price bigger than or equal to $1,000

Let's analyze the preceding calculation:

• We created a virtual table using the FILTER() function on top of the Product 
table to get only the products with a List Price value bigger than or equal to 
$1,000. All columns from the Product tables are available in this virtual table, 
which lives in memory. It is only available within the Orders with List 
Price Bigger than or Equal to $1,000 measure and nowhere else in 
the data model.
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• The SUM() function then calculates the summation of the OrderQuantity from 
the Internet Sales table.

To use the preceding measure, put a table visual on a report page. Select Product Name 
from the Product table, then select the Orders with List Price Bigger,  
or Equal to $1,000 measure. The result looks like the following figure:

Figure 2.5 – Orders with a list price bigger than or equal to $1,000 by product

Let's take another step forward and look at a more complex scenario.
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Using virtual tables in a measure – Part 2
In the Adventure Works, Internet Sales.pbix sample, create a measure in 
the Internet Sales table to calculate quantities that the customers ordered more 
than 4 products with a list price bigger than $1,000. Name the measure Order Qty for 
Customers Buying More than 4 Products with List Price Bigger 
Than $1,000.

To solve this scenario, we need to create a virtual table of customers with more than 4 
orders for products that cost more than $1,000. The following code will take care of that:

 Order Qty for Customers Buying More than 4 Product with List 
Price Bigger Than $1,000 = 

SUMX(

    FILTER(

        VALUES(Customer[CustomerKey]) //Virtual table

        , [Orders with List Price Bigger than or Equal $1,000] 
> 4

        )

    , [Orders with List Price Bigger than or Equal $1,000]

    )

Analyzing the preceding calculation helps us to understand the power of virtual tables 
much better:

• The virtual table here has only one column, which is CustomerKey. Remember, 
this column is only accessible within the current calculation.

• Then, we use the FILTER() function to filter the results of VALUES() only to 
show the customer keys that have more than 4 orders for products with a list price 
of more than $1,000. 

• Last, we sum all those quantities for the results of FILTER().
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We can now put a table visual on the report page, then select First Name and Last 
Name from the Customer table and the new measure we just created. The following 
figure shows the customers who ordered more than 4 items that cost more than $1,000:

Figure 2.6 – The Order Qty for Customers Buying More than 4 Product with List Price Bigger Than 
$1,000 by Customer table

As stated earlier, we can use all DAX functions that return a table value to create virtual 
tables. However, the functions in the following table are the most common ones:

Figure 2.7 – Commonly used functions
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The virtual tables are only available in memory. Moreover, they are not visible in the 
model view in Power BI Desktop. Therefore, they are a bit hard to understand. However, 
there are still some ways that you can test the virtual tables and visually see the results, 
which we will cover in the next section.

Visually displaying the results of virtual tables
In this section, we explain how you can see the results of virtual tables. It is essential to 
see the results of a virtual table rather than only internalizing the results in our minds.  
In this section, we look at two different ways to see a virtual table's results.

Creating calculated tables in Power BI Desktop
You can create calculated tables in Power BI Desktop with the function (or functions) you 
used to create the virtual tables.

We will use part 1 of the second scenario discussed in this chapter to see how this works:

1. In Power BI Desktop, click New Table from the Modeling tab.

2. Copy and paste the virtual table section, then press Enter:

Test Virtual Table =

FILTER('Product'                  //Virtual table start

            , 'Product'[List Price]>=1000

                )                           //Virtual 
table end

3. Click the Data tab from the left pane.

4. Select Test Virtual Table from the Fields pane to see the results.
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As you can see, all columns from the Product table are available. However, there 
are only 126 rows loaded into this table, which are the products with a List 
Price value bigger than or equal to 1,000. The original Product table has  
397 rows:

Figure 2.8 – Visually displaying virtual tables in a Power BI Desktop calculated table

Using DAX Studio
DAX Studio is one of the most popular third-party tools available to download for free. 
You can get it from the tool's official website (https://daxstudio.org/). You can 
easily use DAX Studio to see the results of your virtual tables. First of all, you need to open 
your Power BI file (*.pbix) before you can connect to it from DAX Studio. Open DAX 
Studio and follow these steps:

1. Click PBI/SSTD Model.

2. Select a desired Power BI Desktop instance.

https://daxstudio.org/
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3. Type in the EVALUATE statement, then copy and paste the Virtual Table part 
of the calculation:

FILTER('Product'                  //Virtual table start

            , 'Product'[List Price]>=1000

                )                            //Virtual 
table end                           

4. Press F5 or click the Run button to run the query:

Figure 2.9 – Running virtual table expressions in DAX Studio

Note
In DAX Studio, you can run DAX queries, which must start with the 
EVALUATE statement.
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Relationships in virtual tables
In relational systems, when we think about tables, we usually think about tables and their 
relationships. So far, we have learned about virtual tables. Now it is time to think about the 
relationships between virtual tables and other tables (either physical tables available in the 
data model or other virtual tables). As stated earlier, we create a virtual table by generating 
it, constructing it, or deriving from an existing table within the data model. Moreover, 
there are some cases where we can create more than one virtual table to calculate results. 
When it comes to virtual tables, there are two types of relationships:

• Suppose a virtual table is derived from a table that physically exists in the data 
model. In that case, there is a relationship between the virtual table and the original 
physical table, which is the so-called lineage.

• If we create more than one virtual table in a calculation, then we create relationships 
between those virtual tables programmatically

Either way, the relationship is not an actual physical relationship within the data model. 
It is created on the fly when a calculation is computed. Therefore, understanding virtual 
relationships is somewhat involved. So, let's go through a hands-on scenario.

A business requires you to calculate the average product standard cost by Product 
Category, Product Subcategory, and Product.

To go through this scenario, open the Chapter 2, Virtual Tables.pbix sample 
file. Look at the data model. It is pretty simple. It consists of only two tables, Product 
and Internet Sales. Looking more closely, you will see a ProductStandardCost 
column in the Internet Sales table to use in our measure. The following figure shows 
the data model:
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Figure 2.10 – Product and Internet Sales

The next step is to create a measure to calculate the average product standard cost:

Avg. Product Standard Costs = 

AVERAGE('Internet Sales'[ProductStandardCost])

Now can test the measure we created with the following steps:

1. Put a matrix visual on the report canvas.

2. Put the Product Category, Product Subcategory, and Product columns 
from the Product table into the Rows section of the matrix visual.

3. Put the Avg. Product Standard Costs measure into the Values section of 
the matrix.
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The following screenshot illustrates the steps:

Figure 2.11 – Visualizing Avg. Product Standard Costs by Product Category,  
Product Subcategory, and Product

It looks easy. But let's have a more thorough look at the underlying data and make sure the 
calculation is correct. Click Data View from the left pane in Power BI Desktop, then click 
the Internet Sales table. 

As you can see in the following figure, there is a ProductStandardCost value for each 
transaction. In other words, all product costs from when the supplier supplies the item 
until the item comes off the shelf are considered:
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Figure 2.12 – Each transaction has a value for ProductStandardCost

The product costs are usually variable, and they change over time. So, it is crucial to know 
if that is the case in our scenario. If that is the case, then the preceding calculation is 
correct.

Now let's make this scenario a bit more challenging. To confirm whether our 
understanding of the requirements is correct, we ask the business to confirm whether 
they calculate all costs for an item until it sells. We also need to confirm with the business 
whether we need to keep the product cost history.

The business' response is that their reporting requires always showing the current product 
standard cost for an item before it goes on the shelf. In other words, there is just one flat 
rate for the standard cost associated with each product. So, for this specific scenario, we do 
not need to keep a history of the costs.

That response means that the preceding calculation is incorrect. To fix the issue, we need 
to move the ProductStandardCost column into the Product table. In that case, 
there is only one product standard cost associated with each product. This is how data 
modeling can help to decrease the level of complexity of our DAX expressions. But, to 
demonstrate the virtual tables, we create another measure and analyze the results. Before 
creating the measure, let's review our requirements once again.

We need to get the average of the product standard cost by Product Category, 
Product Subcategory, and Product. Each product has only one current product 
standard cost. Therefore, we can create a virtual table with the ProductKey column and 
the ProductStandardCost column side by side. Note that the two columns come 
from different tables. However, since there is a physical relationship between the two 
tables already, we can easily have the two columns side by side in a single virtual table.
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The following measure caters for the preceding requirements:

Avg. Product Standard Costs Correct = 

AVERAGEX(

    SUMMARISE (

        'Internet Sales'

        , 'Product'[ProductKey]

        ,  'Internet Sales'[ProductStandardCost]

        )

        , 'Internet Sales'[ProductStandardCost]

)

We can now add the new measure to the matrix visual we previously put on the report 
canvas to see both measures side by side. This will quickly show the differences between 
the two calculations. The totals especially show a big difference between the two average 
calculations.

Let's analyze the preceding measure to see how it works.

AVERAGEX() is an iterator function that iterates through all the rows of its table 
argument to calculate its expression argument. Here is where we created the virtual table 
using the SUMMARIZE() function.

As you can see in the following figure, we created a virtual table on top of the Internet 
Sales table. We get the ProductStandardCost values grouped by ProductKey 
from the Product table:

Figure 2.13 – A virtual table created on top of two tables

How is that possible? Here is how it works.
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The AVERAGEX() function is an iterator function. It goes through each row of the 
Internet Sales table to get the ProductStandardCost column's values, grouped 
by related ProductKey from the Product table via the existing relationship between 
the two tables. When we run the SUMMARIZE() part of the preceding calculation in DAX 
Studio, we see that SUMMARIZE() retrieves only 158 rows, while the Internet Sales 
table has more than 60,000 rows. The reason is the existing relationship between the 
Internet Sales table and the Product table.

The following figure shows the results of running the SUMMARIZE() section of the 
preceding calculation in DAX Studio:

Figure 2.14 – Results of running the SUMMARIZE() part of the calculation in DAX Studio

So far, so good. 
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The other point to note is that we created a virtual table inside a measure. When we put 
the Product Category, Product Subcategory, and Product columns into the 
matrix visual, they show the correct values for the Avg. Product Standard Costs 
Correct measure. We did not physically create any relationships between Internet 
Sales and the virtual table. How come we get the correct results?

The answer is to do with the lineage between the derived virtual table and the original 
physical table. The virtual table inherits the relationship with the Internet Sales 
table from the Product table. In other words, the virtual table has a one-to-one virtual 
relationship with the Product table through ProductKey. Hence, when we put the 
Product Category, Product Subcategory, and Product columns into the 
matrix visual, the filters propagate to the Product table and then to the Internet 
Sales table. The following figure illustrates how the preceding virtual table relates to the 
Product table and the Internet Sales table:

Note
Neither the virtual table nor any virtual relationships are visible in the data 
model. The following figure is for illustration only.

Figure 2.15 – The virtual table and its virtual relationship with the physical table
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Using virtual tables is an effective technique that we can use on many different occasions. 
One such occasion would be when there is no relationship between two tables and  
we cannot create a physical relationship between the two as the relationship is only 
legitimate in some business cases. 

Let's look at some more complex scenarios where we have multiple virtual tables with 
inter-virtual relationships.

The business needs to calculate Internet Sales in USD. At the same time, there are 
several values in Internet Sales with other currencies. Looking at the Chapter 2, 
Virtual Tables and Relationships.pbix file, we see an Exchange Rates 
table. While the base currency is USD, there is no USD data captured in the Exchange 
Rates table. The following figure shows the Exchange Rates data; as you can see, the 
exchange rate is captured each day. If we want to define a primary key for the Exchange 
Rates table, we can come up with a composite key of CurrencyKey and Date:

Figure 2.16 – Exchange Rates data
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Looking more thoroughly at the Exchange Rates data shows that the base currency 
is USD. So, the AverageRate column shows the conversion rate from the value of the 
Currency column to USD, on a specific date, for each row.

To better understand the scenario, let's look at the Internet Sales and Exchange 
Rates data side by side, as in the following figure:

Figure 2.17 – Calculating Internet Sales in USD

To calculate the internet sales in USD on a specific date, we need to find the relevant 
CurrencyKey for that specific date in the Exchange Rates table, then multiply 
the value of SalesAmount from the Internet Sales table by the value of 
AverageRate from the Exchange Rates table.

The following measure caters for that:

Internet Sales USD = 

SUMX(

    NATURALINNERJOIN (

            SELECTCOLUMNS( 

                'Internet Sales'

, "CurrencyKeyJoin", 'Internet Sales'[CurrencyKey] * 1

                , "DateJoin", 'Internet Sales'[OrderDate] + 0

                , "ProductKey", 'Internet Sales'[ProductKey]

                , "SalesOrderLineNumber", 'Internet 
Sales'[SalesOrderLineNumber]

                , "SalesOrderNumber", 'Internet 
Sales'[SalesOrderNumber]

                , "SalesAmount", 'Internet Sales'[SalesAmount] 

                )

            , SELECTCOLUMNS (

                'Exchange Rates'

                , "CurrencyKeyJoin", 'Exchange 
Rates'[CurrencyKey] * 1
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                , "DateJoin", 'Exchange Rates'[Date] + 0

                , "AverageRate", 'Exchange Rates'[AverageRate]

            )

        )

, [AverageRate] * [SalesAmount]

)

The following figure shows how the preceding calculation works: 

Figure 2.18 – How Internet Sales USD works

As the preceding figure shows, we first create two virtual tables. We join those two virtual 
tables using two columns, the CurrencyKeyJoin and DateJoin columns. If you look 
at the construction of the two columns, you will see the following:

• We added 0 days to 'Internet Sales'[OrderDate] to construct DateJoin 
for the virtual table derived from the Internet Sales table. We did the same 
to 'Exchange Rates'[Date] to construct DateJoin for the virtual table 
derived from the Exchange Rates table.

• We multiplied CurrencyKey by 1 to construct the CurrencyKeyJoin column 
in both virtual tables.
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At this stage, you may ask why we need to do any of this. The reason is purely to make the 
NATURALINNERJOIN() function work. The NATURALINNERJOIN() function, as its 
name implies, performs an inner join of a table with another table using the same column 
names with the same data type and the same lineage. 

We want to perform an inner join between the two virtual tables based on the following 
columns:

• 'Internet Sales'[OrderDate]  'Exchange Rates'[Date]

• 'Internet Sales'[CurrencyKey]  'Exchange 

Rates'[CurrencyKey]

The first requirement for the NATURALINNERJOIN() function is to have the same 
column names in both joining tables. To meet that requirement, we renamed both the 
OrderDate column from the Internet Sales table and the Date column from the 
Exchange Rates table to DateJoin.

The second requirement is that the columns participating in the join must have the same 
data type. We already meet this requirement.

The last requirement, which is the most confusing one yet, is that the join's columns must 
have the same lineage if there is a physical relationship between the two tables. If there is 
no physical relationship between the tables, the columns participating in the join must 
not have lineage to any physical columns within the data model. Therefore, we need to 
break the lineage of the join columns. Otherwise, the NATURALINNERJOIN() function 
will not work. To break the lineage, we need to use an expression rather than an actual 
column name. Therefore, we added 0 days to 'Internet Sales'[OrderDate] and 
multiplied 'Exchange Rates'[CurrencyKey] by 1 to break the lineage of those 
two columns. 

Finally, we have the desired result set, so we can multiply [SalesAmount] by 
[AverageRate] to get the sales amount in USD.

The following figure shows the Internet Sales and Internet Sales USD 
measures side by side:
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Figure 2.19 – Visualizing Internet Sales and Internet Sales USD side by side in a matrix visual

Note
In virtual tables, we can join two tables using multiple columns.

We created the Internet Sales USD measure to demonstrate how virtual tables 
and virtual relationships work. In real-world scenarios, best practice is to move the 
AverageRate column to the Internet Sales table where possible. In our example, 
it is easily possible. We merge the Internet Sales table with the Exchange Rates 
table in Power Query Editor to get the AverageRate column into Internet Sales. 
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Notes
It is best practice to implement business logic in the source code when 
possible. If you cannot take care of the business logic in the source code, then 
try to solve the issue(s) in Power Query Editor. If the logic is too complex to 
implement in Power Query Editor, look at the data model and investigate the 
possibilities for creating physical relationships rather than virtual ones. For 
instance, in the Exchange Rates scenario, we can move the rates for each 
transaction to the Internet Sales table without changing the granularity 
of Internet Sales.

Review the business logic and look for any conformities of using the same 
virtual tables. If you are likely to use the same virtual table(s) multiple times, 
try to create either physical tables or calculated tables that can be used across 
the data model.

Virtual tables and virtual relationships are potent tools to have in your toolbelt, 
yet they are costly. When used on large amounts of data, you may not get good 
performance out of your virtual tables.

So far, we have looked at virtual tables, how they work through relationships, and how  
we can leverage their power in our model. In the next section, we look at time 
intelligence in data modeling.

Time intelligence and data modeling
Time intelligence is one of the most powerful and commonly used functionalities in 
Power BI. For those coming from a SQL development background, it will be pretty clear 
how hard it is to build time intelligence analysis in a relational database system such as 
SQL Server. These complex calculations are made easy in Power BI by just a handful 
of time intelligence functions. This section briefly looks at the common challenges of 
working with time intelligence functions in Power BI. 

Note
Our aim in this book is not to teach you how to use DAX functions; we just 
cover some more relevant data modeling concepts.

There are currently 35 time intelligence functions available in Power BI. You can find the 
complete list of functions on the Microsoft website: https://docs.microsoft.
com/en-us/dax/time-intelligence-functions-dax.

https://docs.microsoft.com/en-us/dax/time-intelligence-functions-dax
https://docs.microsoft.com/en-us/dax/time-intelligence-functions-dax
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Detecting valid dates in the date dimension
When dealing with periodic calculations in time intelligence, it is often hard to get just 
valid dates to show in the visuals. 

Let's have a look at how to do this with a scenario.

A business needs to see the following calculations:

• Internet Sales Month to Date (MTD)

• Internet Sales Last Month to Date (LMTD)

• Internet Sales Year to Date (YTD)

• Internet Sales Last Year to Date (LYTD)

• Internet Sales Last Year Month to Date (LY MTD)

Calculating all this is super easy as there are some DAX functions that are available for us 
to use. The calculations are as follows.

To calculate MTD, use the following DAX expressions:

Internet Sales MTD = 

TOTALMTD(

    [Internet Sales]

    , 'Date'[Full Date]

 ) 

Use the following DAX expressions to calculate LMTD:

Internet Sales LMTD = 

TOTALMTD(

    [Internet Sales]

    , DATEADD('Date'[Full Date], -1, MONTH)

    )
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Use the following DAX expressions to calculate YTD:

Internet Sales YTD = 

TOTALYTD(

    [Internet Sales]

    , 'Date'[Full Date]

    )

Use the following DAX expressions to calculate LYTD:

Internet Sales LYTD = 

TOTALYTD (

    [Internet Sales]

    , DATEADD('Date'[Full Date], -1, YEAR)

)

Finally, use the following DAX expressions to calculate LY MTD:

Internet Sales LY MTD = 

TOTALMTD(

    [Internet Sales]

    , SAMEPERIODLASTYEAR('Date'[Full Date])

)

We can then put a table visual on the report canvas to show them side by side with Full 
Date from the Date table. Everything looks good unless we sort the Full Date 
column in descending order, which is when we realize that there is an issue. We get 
many null values for the Internet Sales, Internet Sales MTD, and Internet 
Sales LMTD measures for many dates. We are also getting a lot of duplicate values for 
the Internet Sales YTD measure.
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The following figure illustrates the results:

Figure 2.20 – Future dates-related issue in the periodic time intelligence calculations
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This is indeed an expected behavior. We must cover all dates from 1st January up to 
the 31st December of all years in the date dimension. So, it is expected that we will get 
null values for future dates for the Internet Sales, Internet Sales MTD, and 
Internet Sales LMTD measures and duplicate values for the Internet Sales 
YTD measure. The following figure shows the results when we scroll down a bit in the table 
visual. We can see that the last date with a valid transaction is 28/01/2014, which means 
all the preceding measures must finish the calculations by that date:

Figure 2.21 – The last valid date is 28/01/2014
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One way that some may think of to solve the issue is to return BLANK() for the invalid 
dates. The following calculation shows the Internet Sales MTD Blanking 
Invalid Dates measure that returns null if there is no transaction for a particular 
date:

Internet Sales MTD Blanking Invalid Dates = 

VAR lastorderDate = MAX('Internet Sales'[OrderDateKey])

RETURN

IF(

    MAX('Date'[DateKey]) <= lastoderDate

    , TOTALMTD(

            [Internet Sales]

            , 'Date'[Full Date]

            )

    )

What we are doing in the preceding measure is simple. We get the maximum of 
OrderDateKey from the Internet Sales table, and then we add a condition that 
if an OrderDateKey value does not exist, we return blank; otherwise, we return the 
TOTALMTD() calculation. 

The following figure shows the results of the Internet Sales MTD Blanking Invalid Dates 
measure:

Figure 2.22 – Internet Sales MTD Blanking Invalid Dates
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While this calculation may work for some scenarios, it is not a correct calculation in some 
other scenarios, such as ours. Looking more precisely at the results reveals an issue. The 
following figure reveals the problem:

Figure 2.23 – Missing dates as a result of blanking invalid dates

The other way to overcome the issue is to create a flag column in the Date table to 
validate each date value in the Date table. It shows TRUE when the DateKey value is 
between the minimum and maximum OrderDateKey values. We can create the new 
column either in Power Query Editor or as a calculated column using DAX. From  
a performance and data compression viewpoint, creating a calculated column with  
DAX is ideal in terms of performance. The column's data type is True/False; therefore,  
its cardinality is low. Hence, the xVelocity engine can perfectly compress it.

The following calculation creates a new calculated column:

IsValidDate = 

    AND('Date'[DateKey] >= MIN('Internet Sales'[OrderDateKey])

        , 'Date'[DateKey] <= MAX('Internet 
Sales'[OrderDateKey])

    )

Now we have two options:

• We can simply use the IsValidDate calculated column as a visual filter. In this 
case, we don't need to change the DAX expressions of the original measures. The 
following figure shows the results in a table visual:
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Figure 2.24 – Using the IsValidDate calculated column under Filters

• We can add the IsValidDate column to all measures. In this case, we need to 
filter the results of the periodic functions by IsValidDate when IsValidDate 
returns TRUE().

Use the following DAX expressions to calculate Internet Sales MTD with Valid 
Dates:

Internet Sales MTD with Valid Dates = 

TOTALMTD(

    [Internet Sales]

    , CALCULATETABLE(

        VALUES('Date'[Full Date])

        , 'Date'[IsValidDate] = TRUE()

    )

 )
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Use the following DAX expressions to calculate Internet Sales LMTD with 
Valid Dates:

Internet Sales LMTD with Valid Dates = 

TOTALMTD(

    [Internet Sales]

    , DATEADD(

            CALCULATETABLE(

                    VALUES('Date'[Full Date])

                    , 'Date'[IsValidDate] = TRUE()

                    )

        , -1

        , MONTH

        )

    )

Use the following DAX expressions to calculate Internet Sales YTD with Valid 
Dates:

Internet Sales YTD with Valid Dates = 

CALCULATE(

    TOTALYTD(

        [Internet Sales]

        , CALCULATETABLE(

                    VALUES('Date'[Full Date])

                    , 'Date'[IsValidDate] = TRUE()

                    )

            ) )

Use the following DAX expressions to calculate Internet Sales LYTD with 
Valid Dates:

Internet Sales LYTD with Valid Dates = 

TOTALYTD (

    [Internet Sales]

    , DATEADD(

            CALCULATETABLE(

                    VALUES('Date'[Full Date])
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                    , 'Date'[IsValidDate] = true()

                )

            , -1

            , YEAR

            )

        )

And finally, use the following DAX expressions to calculate Internet Sales LY MTD 
with Valid Dates:

Internet Sales LY MTD with Valid Dates = 

TOTALMTD(

    [Internet Sales]

    , SAMEPERIODLASTYEAR(

            CALCULATETABLE(

                VALUES('Date'[Full Date])

                , 'Date'[IsValidDate] = TRUE()

                    )

                )

            )

The following figure shows the results of putting the preceding measures in a table visual 
without filtering the visual with the IsValidDate column:

Figure 2.25 – Periodic calculations with improved measures
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This method quickly resolves another issue when we use the Full Date column in  
a slicer visual. It is much nicer if we only show the valid dates in the slicer. The following 
figure illustrates a slicer visual showing full date ranges from the Date table, side by side 
with another slicer visual showing only valid dates:

Figure 2.26 – The date slicer can be filtered by IsValidDate

In the preceding image, we used the IsValidDate flag column to filter the right slicer's 
values.

Period-over-period calculations
In many cases, businesses need to perform period-over-period calculations, such as  
year-over-year and month-over-month calculations. Period-over-period calculations can 
vary from business to business, but the principles remain the same. Let's move forward 
with a scenario.

A business needs to be able to dynamically select a Period-over-Period Variance calculation 
in a single area chart based on the following conditions:

• There is just one area chart on the report canvas.

• The user can choose between year-over-year or month-over-month calculations. 
The year-over-year calculation compares Internet Sales values by Internet 
Sales Last Year (LY). Month-over-month compares Internet Sales 
values by Internet Sales Last Month (LM).
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• The calculations of Period-over-Period Variance are as follows:

Internet Sales MoM Variance = Internet Sales – Internet 
Sales LM

Internet Sales YoY Variance = Internet Sales – Internet 
Sales LY

This may sound like a data visualization-related assignment. However, in reality, we 
have to take care of almost 99% of it in the data model by traversing all the necessary 
calculations and making all the bits and pieces available for the report writers to drag and 
drop visuals and use fields to create reports.

The first step is to analyze the scenario:

• The business needs to calculate the Internet Sales Month-over-Month (MoM) 
variance and Internet Sales Year-over-Year (YoY) variance. The Internet 
Sales measure already exists, but we need to create new measures to calculate 
Internet Sales LM and Internet Sales LY.

• We need another measure to consolidate the preceding measures based on the 
requirements to show on the line chart. We can do this in only one measure, but  
for reusability, we prefer to create separate measures, then reference those measures 
in a third measure.

• To satisfy the dynamic measure selection in the line chart, we need to create a new 
table in Power BI with only one column containing the period-over-period names. 
We use this column in the consolidating measure (the third measure).

The calculations are as follows:
Internet Sales LM =

CALCULATE(

        [Internet Sales]

        , DATEADD('Date'[Full Date], -1, MONTH)

)

Internet Sales LY = 

CALCULATE(

        [Internet Sales]

        , SAMEPERIODLASTYEAR('Date'[Full Date])

)
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Before implementing the scenario, let's look at the Internet Sales and Internet 
Sales LM measures side by side to understand how to implement Internet Sales 
MoM Variance. The following figure shows the two measures side by side in a table 
visual:

Figure 2.27 – There are blank values for the last month
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The preceding figure shows the issue immediately. Internet Sales LM returns null 
values for the first 28 rows as the first transaction started on 29/12/2010. Now we create  
a measure based on the scenario's calculation and see what can go wrong:

Internet Sales MoM Variance = [Internet Sales] - [Internet 
Sales LM]

With that, put the new measure on the table visual. The following figure shows the results:

Figure 2.28 – The variance values for the first 28 rows do not make sense
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As you see, the variance values start to make sense only after 28/01/2011. The reason is 
trivial. There were no sales in the past 28 days, so we have to cut off those values. One 
of the first solutions that may come to mind is eliminating null values for Internet 
Sales LM. The measure looks as follows:

Internet Sales MoM Variance Incorrect = 

IF(

    NOT(ISBLANK([Internet Sales LM]))

    , [Internet Sales] - [Internet Sales LM]

    )

In the preceding calculation, we say that if Internet Sales LM is not blank, get the 
variance; otherwise, it is blank.

But there is a problem with the calculation. The following figure shows the issue:

Figure 2.29 – The calculation results in incorrect variance values  
when there are no sales in a day last month
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There is also another issue with the preceding calculation. The calculation shows the last 
month's sales for future dates, which is incorrect. We can see the issue when we sort the 
results by Full Date in descending order. Figure 2.30 illustrates the problem:

Figure 2.30 – Future dates show up for Internet Sales LM.  
The calculation must stop at the last valid date with Internet Sales
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Two failures in a calculation are enough to prompt us to come up with a better solution. 
The following calculation resolves the issues:

Internet Sales MOM Variance = 

VAR firstValidDateWithSalesLM = FIRSTNONBLANK(ALL('Date'[Full 
Date]), [Internet Sales LM])

VAR lastValidDateWithSalesLM = LASTNONBLANK(ALL('Date'[Full 
Date]), [Internet Sales])

RETURN

    SUMX(

        FILTER(

            VALUES('Date'[Full Date])

            , 'Date'[Full Date] >= firstValidDateWithSalesLM

                && 'Date'[Full Date] <= 
lastValidDateWithSalesLM

            )

        , [Internet Sales] - [Internet Sales LM]

        )

Let's see how the preceding calculation works.

• The firstValidDateWithSalesLM variable calculates the first non-blank date 
from the Date table that has Internet Sales LM associated with it.

• The lastValidDateWithSalesLM variable calculates the last non-blank date 
from the Date table that has Internet Sales associated with it.

• In FILTER(), we are generating a virtual table, getting the valid 
dates that fall between the firstValidDateWithSalesLM and 
LastValidDateWithSalesLM variables.

• SUMX() then iterates through the rows of the virtual table, calculating the variance.

The preceding logic guarantees that we only get valid values for the valid date range. The 
valid date range starts from the first date with a transaction for Internet Sales LM 
and goes up to the last date with a transaction for Internet Sales.

The following figure shows the results:
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Figure 2.31 – The correct calculation shows the correct results when Internet Sales LM is blank and stops 
the calculation at the last date with an Internet Sales value

Now that we know the logic, we can create the other measure, Internet Sales LY,  
as follows:

Internet Sales YoY Variance = 

VAR firstValidDateWithSalesLY = FIRSTNONBLANK(ALL('Date'[Full 
Date]), [Internet Sales LY])

VAR lastValidDateWithSalesLY = LASTNONBLANK(ALL('Date'[Full 
Date]), [Internet Sales])

RETURN

    SUMX(

        FILTER(
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            VALUES('Date'[Full Date])

            , 'Date'[Full Date] >= firstValidDateWithSalesLY

                && 'Date'[Full Date] <= 
lastValidDateWithSalesLY

            )

        , [Internet Sales] - [Internet Sales LY])

So far, we have sorted out the initial measures; we can now implement the rest of the 
scenario.

As Figure 2.32 illustrates, the next step is to create a new table using the Enter data 
functionality in Power BI and type in the period-over-period values. We can type in MoM 
Variance and YoY Variance and click Load:

Figure 2.32 – Creating a new table using the Enter data functionality in Power BI

The next step is to put a slicer on the report canvas and use the Period over Period 
column from the Period Selection table. 

The next step is creating another measure to dynamically switch between the measures 
based on what the end user selects in the slicer. The following calculation caters for that:

Internet Sales PoP Variance = 

SWITCH(

        TRUE()
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        , SELECTEDVALUE('Period Selection'[Period over Period]) 
= "MoM Variance"

        , [Internet Sales MoM Variance]

        , [Internet Sales YoY Variance]

)

Using the preceding calculation, if the end user selects MoM Variance from the 
slicer, it calls the Internet Sales MoM Variance measure; otherwise, it calls the 
Internet Sales YoY Variance measure.

We now put an area chart on the report canvas to test the results. The following figure 
shows the results when the user selects MoM Variance. Note that the starting date and 
the ending date are correct:

Figure 2.33 – Area chart showing MoM Variance when the user selects MoM Variance from the slicer

The following figure shows the results when the user selects YoY Variance:

Figure 2.34 – Area chart showing YoY Variance when the user selects YoY Variance from the slicer
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With that, we have finished implementing the scenario.

Generating the date dimension with DAX
Thinking about a data model without date values is unrealistic. Sometimes, there can even 
be more than just one date to describe a single fact. Moreover, in many cases, we need to 
analyze facts by other date elements, such as year, quarter, month, financial year, public 
holidays, and so on. Besides, the time intelligence functions in DAX perform the best with 
a Date table. Therefore, having a Date table in any model is inevitable. In this section, we 
learn how to create a Date table in Power BI using DAX. 

Note
If there is already a Date table available in the source system, we do not need 
to create another using DAX. We have seen some developers with multiple 
Date tables in their model for no particular reason. 

When creating the Date table, consider the following notes:

• The Date table must have at least one column with the Date or DateTime  
data type.

• The column containing the date values must be at day granularity (not year/month).

• The Date column must start from 1st January of the starting year and go up to 31st 
December of the ending year.

• The date range contained in the Date table must be continuous, so there are no 
gaps between the dates.

It is good practice to ask the business to provide the date range they would like to cover. 
We can find the start date from the data model by looking at the fact tables to find 
the minimum date. But the end date is not usually that simple. Different businesses' 
requirements are different. Some prefer the end date to always be the 31st December in the 
current year, while others require a broader date range.
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The following two DAX functions can help us to identify the date range:

• CALENDARAUTO(): Searches across the data model, among all columns with the 
Date or DateTime data type, and finds the minimum date and maximum date. 
Finally, it generates one column named Date, which starts from 1st January of the 
first date and finishes on 31st December of the last date. This is quite handy, but 
you need to be careful. It also considers things such as dates of birth or deceased 
dates, which may result in irrelevant dates being in the model. Besides, in some 
cases, the data contains a date in the past and a date in the future to demonstrate the 
unknown dates, such as 01/01/1900 for unknown dates in the past and 31/12/9999 
for unknown dates in the future. The CALENDARAUTO() function also considers 
those dates, resulting in having an unnecessarily huge Date table. Therefore,  
we have to tailor the results.

• CALENDAR(): Accepts a start date and an end date. Both the start date and end date 
must be in date format. Like CALENDARAUTO(), the CALENDAR() function also 
generates a Date column containing date values. But unlike CALENDARAUTO(), it 
does not automatically start from 1st January of the start date, and it does not finish 
by 31st December of the end date. Remember, the date dimension needs to start 
from 1st January of the starting year and finish by 31st December of the ending year. 
Therefore, we need to adjust the results.

As mentioned earlier, if, for any reason, we cannot get the start year and end year from 
the business, then we need to use one of the preceding DAX functions. If we use the 
CALENDAR() function and have many Date or DateTime columns across the model, 
this can be laborious work. Therefore, we can always use the CALENDARAUTO() function, 
which automatically generates the date based on all Date or DateTime columns across 
the model. However, we need to review the results. While using the CALENDARAUTO() 
or CALENDAR() functions works, there are some other points to consider before creating 
a Date table using DAX. Many Power BI developers create a new calculated table with 
either of the preceding functions and then add calculated columns to it. While this 
method works, it is not ideal. The reason for this is that we are creating a few calculated 
columns. The calculated columns are generated on the fly. Whether we use them in the 
visuals or not, the data gets loaded into memory at creation time. To release the allocated 
memory, we need to close the Power BI file.
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On the other hand, calculated tables interact differently with memory. The calculated 
tables are also created on the fly. However, the data is not loaded into the memory unless 
we use the columns in a visual. So, it is best practice to add the required columns in the 
Date table within the DAX expression to create the calculated table, rather than creating 
the calculated table and adding those columns as calculated columns later.

While this is more of a performance-tuning strategy, it is good to be conscious of it while 
creating a Date table. The following DAX expressions generate a basic Date table using 
CALENDARAUTO():

Date = 

VAR firstOderDate = MIN('Internet Sales'[OrderDate])

VAR lastOderDate = MAX('Internet Sales'[OrderDate])

RETURN

ADDCOLUMNS(

    SELECTCOLUMNS(

            CALENDARAUTO()

            , "Full Date"

            , [Date]

            )

    , "DateKey", VALUE(FORMAT([Full Date], "yyyyMMdd"))

    , "Quarter", CONCATENATE("Q ", QUARTER([Full Date]))

    , "Month", FORMAT([Full Date], "MMMM")

    , "Month Short", FORMAT([Full Date], "MMM")

    , "MonthOrder", MONTH([Full Date])

    , "Week", CONCATENATE("Wk ", WEEKNUM([Full Date]))

    , "Day", FORMAT([Full Date], "dddd")

    , "Day Short", FORMAT([Full Date], "ddd")

    , "Day of Month", DAY([Full Date])

    , "DayOrder", WEEKDAY([Full Date], 2) //First day is Monday

    , "Year Month", FORMAT([Full Date], "yyyy-MM")

    , "IsValidDate", AND([Full Date] >= firstOderDate, [Full 
Date] <= lastOderDate)

)

The following figure shows the results of running the preceding code:
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Figure 2.35 – Creating a Date table with DAX

Marking a Date table as a date table
So far, we have discussed the importance of having a Date table in our model, and we 
also looked at some related scenarios. In this section, we discuss an essential aspect of the 
date dimension. As discussed in the previous section, time intelligence functions work 
best with a Date table. In many cases, we only keep the date keys in the fact tables used 
in the relationship between the fact table and the Date dimension. To ensure that the 
time intelligence functions work correctly, we need to set a unique identifier column with 
either the Date or DateTime data type. To specify that unique identifier, we need to set 
Mark as Date Table. Setting this up is super easy. Let's see in a scenario what happens if 
we forget to set this up.

For this scenario, we will use the Chapter 2, Mark Date as Date Table 
Before.pbix and Chapter 2, Mark Date as Date Table After.pbix 
sample files.
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In this scenario, the business needs to analyze the following measures over a calendar 
hierarchy:

• Internet Sales MTD 

• Internet Sales YTD

• Internet Sales LMTD 

• Internet Sales LYTD 

The calendar hierarchy holds the following levels:

• Year

• Month

• Full date

Note
The relationship between Internet Sales and the Date table is created 
between OrderDateKey from Internet Sales and DateKey from 
the Date table. Both OrderDateKey and DateKey are of the Number 
data type (integer).

The DAX expressions for the preceding measures are as follows:

Use the following DAX expressions to calculate Internet Sales MTD:

Internet Sales MTD = 

TOTALMTD(

        [Internet Sales]

        , 'Date'[Full Date]

        )

Use the following DAX expressions to calculate Internet Sales YTD:

Internet Sales YTD = 

TOTALYTD(

        [Internet Sales]

        , 'Date'[Full Date])
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Use the following DAX expressions to calculate Internet Sales LMTD:

Internet Sales LMTD= 

TOTALYTD(

        [Internet Sales]

        , DATEADD('Date'[Full Date], -1, MONTH)

)

Use the following DAX expressions to calculate Internet Sales LYTD:

Internet Sales LYTD = 

TOTALYTD(

        [Internet Sales]

        , SAMEPERIODLASTYEAR('Date'[Full Date])

)

We put a table visual on the report canvas and use the preceding measures adjacent to the 
Internet Sales measure. The following figure shows the results:

Figure 2.36 – Our time intelligence functions do not work correctly
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The relationship between the Internet Sales table and Date is created between the 
OrderDateKey and Date columns with the Number (integer) data type. As Figure 2.36 
shows, the time intelligence functions do not work correctly. One way to fix the issue is to 
add ALL('Date') to all calculations, as follows, and everything works perfectly.

Use the following DAX expressions to calculate Internet Sales MTD:

Internet Sales MTD = 

TOTALMTD(

        [Internet Sales]

        , 'Date'[Full Date]

        , ALL('Date')

        )

Use the following DAX expressions to calculate Internet Sales YTD:

Internet Sales YTD = 

TOTALYTD(

        [Internet Sales]

        , 'Date'[Full Date]

        , ALL('Date')

        )

Use the following DAX expressions to calculate Internet Sales LMTD:

Internet Sales LMTD = 

TOTALYTD(

        [Internet Sales]

        , DATEADD('Date'[Full Date], -1, MONTH)

        , ALL('Date')

)

Use the following DAX expressions to calculate Internet Sales LYTD:

Internet Sales LYTD = 

TOTALYTD(

        [Internet Sales]

        , SAMEPERIODLASTYEAR('Date'[Full Date])

        , ALL('Date'))
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The following figure shows the new results:

Figure 2.37 – Resolving the incorrect time intelligence calculations  
by adding ALL('Date') to all expressions

A better way, indeed the best way, to resolve the issue is to mark the Date table as a date 
table and specify Full Date as the unique date identifier. There are several ways to do 
so; here, we show one of them:

1. Right-click the Date table from the Fields pane.

2. Click Mark as date table  Mark as date table.
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3. Select a column of either the Date or DateTime data type.

4. Click OK:

Figure 2.38 – Marking Date as the date table

After setting the Date table as the date table, we do not need to add ALL('Date') 
to the time intelligence calculations. All the time intelligence functions now work as 
expected.

Creating a time dimension with DAX
So far, we have discussed the importance of having a Date table in our data model. But 
what if we need to analyze our data at the time level, such as when a business needs to 
analyze their data at the minute level? This means that the granularity of the fact table 
would be at the minute level. So, suppose we store the data in our transactional database 
at the second level. In that case, we need to aggregate that data to the minute level. It is 
crucial to think about the fact table's granularity in the first steps of the data modeling 
process.

In most cases, if not all cases, it is better to have a separate Time table. We also need to 
have a TimeKey or Time column in our fact table to create a relationship between the 
Time table and the fact table. In this section, we discuss a simple way to create a Time 
table using DAX.

The sample file we use in this section is Chapter 2, Time Table.pbix, which 
comes from FactInternetSales in Time Level.xlsx.



Time intelligence and data modeling     85

Let's discuss all this further with a scenario.

A business stores all Internet Sales transactions at the second level. The business 
needs to analyze the business metrics in different time bands, specifically, 5 Min, 15 
Min, 30 Min, 45 Min, and 60 Min. Resolve this challenge with DAX only.

Looking at the sample data, we see an OrderDateTime column of the DateTime  
data type in the Internet Sales table. As mentioned in the scenario, the granularity  
is down to the second level. To solve this challenge purely in DAX, we have to add  
a calculated column to Internet Sales to take the Time part of OrderDateTime. 
We use the following DAX expression to create the new calculated column:

Order Time = TIMEVALUE(FORMAT([OrderDateTime], "hh:mm:ss"))

This column participates in the relationship between the Time table and the Internet 
Sales table.

We also need to create a calculated table with DAX that has a Time column at second 
granularity. The following expressions create the Time table, including the time bands and 
the Time column at second granularity, that is required by the business:

Time = 

SELECTCOLUMNS(

    GENERATESERIES(1/86400, 1, TIME(0, 0, 1))

    , "Time", [Value]

    , "Hour", HOUR ( [Value] )

    , "Minute", MINUTE ( [Value] )

    , "5 Min Band",  TIME(HOUR([Value]), 
FLOOR(MINUTE([Value])/5, 1) * 5, 0) + TIME(0, 5, 0)

    , "15 Min Band", TIME(HOUR([Value]), 
FLOOR(MINUTE([Value])/15, 1) * 15, 0) + TIME(0, 15, 0)

    , "30 Min Band", TIME(HOUR([Value]), 
FLOOR(MINUTE([Value])/30, 1) * 30, 0) + TIME(0, 30, 0)

    , "45 Min Band", TIME(HOUR([Value]), 
FLOOR(MINUTE([Value])/45, 1) * 45, 0) + TIME(0, 45, 0)

    , "60 Min Band", TIME(HOUR([Value]), 
FLOOR(MINUTE([Value])/60, 1) * 60, 0) + TIME(0, 60, 0)

 )
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The next step is to format all DateTime columns to Time. The following figure shows the 
results of running the preceding DAX expressions:

Figure 2.39 – Generating a Time table with DAX

Note
The results shown in the preceding figure are sorted by the Time column in 
ascending order.

The next step is to create a relationship between the Order Time column from the 
Internet Sales table and from the Time table.

The following figure shows how we can add some area charts to the report canvas and 
visualize Internet Sales by different time bands:
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Figure 2.40 – Visualizing Internet Sales by different time bands

Note
It is best practice to move all data transformations, such as generating Date  
or Time tables, to the source system as much as possible. If it is not an option 
for any reason, then it is best to take care of the transformations in Power 
Query Editor.

Summary
In this chapter, we discussed different aspects of DAX and how it can affect our data 
modeling. We looked at some real-world scenarios and challenges and how to solve them 
with DAX.

In the next chapter, we will look at the Power Query (M) expression language in more 
detail. We will also go through some hands-on scenarios, and we will prepare a star 
schema in Power Query step by step. 





Section 2:  
Data Preparation in 

Query Editor

In this section, you will learn how to prepare efficient data models in Query Editor. This 
chapter is all about transitioning from theory to reality. This chapter explains one of the 
most important aspects of data modeling, which is data preparation. Not everyone has 
the luxury of having a pre-built data warehouse; therefore, it is important to know how 
to build dimensions and facts in Query Editor. Power BI leverages the power of Power 
Query in Query Editor, so this chapter quickly introduces the Power Query language from 
a data modeling perspective then explains how to make all components needed in the star 
schema available to then be used in the data model layer in Power BI. We explain different 
techniques in data modeling along with real-world hands-on scenarios.  We also discuss 
common pitfalls that can easily turn building a simple report into a nightmare and ways  
to avoid falling into those traps.

This section comprises the following chapters:

• Chapter 3, Data Preparation in Power Query Editor

• Chapter 4, Getting Data from Various Sources

• Chapter 5, Common Data Preparation Steps



• Chapter 6, Star Schema Preparation in Power Query Editor 

• Chapter 7, Data Preparation Common Best Practices



3
Data Preparation in 
Power Query Editor

In the previous chapters, we discussed various layers in Power BI and went through some 
scenarios. By now, it should be pretty clear to you that Power BI is not only a reporting 
tool. Power BI is indeed a sophisticated all-round business intelligence (BI) technology, 
with the flexibility to be used as a self-service BI tool that supports many BI aspects such 
as extract, transform, and load (ETL) processes, data modeling, data analysis, and data 
visualization. Power BI, as a powerful BI tool, is improving every day, which is fantastic. 
The Power BI development team at Microsoft is constantly bringing new ideas to this 
technology to make it even more powerful. One of the BI areas that Power BI is great for 
is taking care of ETL activities in the data preparation layer, with the so-called Power 
Query Editor in Power BI. Power Query Editor is the dedicated tool in Power BI to write 
Power Query expressions, and is also available in Excel and in many other Microsoft data 
platform products. In this chapter, we look at Power Query M in more detail. You will 
learn about the following topics:

• Introduction to the Power Query M formula language in Power BI

• Introduction to Power Query Editor

• Introduction to Power Query features for data modelers

• Understanding query parameters

• Understanding custom functions
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We will use some hands-on, real-world scenarios to see the concepts in action. 

Introduction to the Power Query M formula 
language in Power BI
Power Query is a data preparation technology offering from Microsoft to connect to 
many different data sources from various technologies to enable businesses to integrate 
data, transform it, make it available for analysis, and get meaningful insights from it. Not 
only can Power Query currently connect over a lot of data sources, but it also provides 
a custom connectors software development kit (SDK) that third parties can use to 
create their data connectors. Power Query was initially introduced as an Excel add-in but 
quickly turned into a vital part of the Microsoft data platform for data preparation and 
data transformation. 

Power Query is currently integrated with many Microsoft products such as Dataverse 
(also known as Common Data Service (CDS)), SQL Server Analysis Services Tabular 
Models (SSAS Tabular), and Azure Analysis Services (AAS), as well as Power BI and 
Excel. Therefore, learning about Power Query can help data professionals support data 
preparation in all technologies mentioned previously. With that, let's have a look at Power 
Query in Power BI.

Power Query M is a formula language connecting to many different data sources to mix 
and match the data between those data sources, to create a single dataset. In this section, 
we introduce Power Query M.

Power Query is CaSe-SeNsItIvE
While Power Query is a case-sensitive language, Data Analysis Expressions (DAX) is not, 
which may confuse some developers. Remember, Power Query and DAX are different 
worlds that came together in Power BI to take care of different aspects of working with 
data. Not only is Power Query case-sensitive in terms of syntax, but it is also case-sensitive 
when interacting with data. For instance, we get an error message if we type the following 
function:

datetime.localnow() 

This is because the following is the correct syntax:

DateTime.LocalNow()
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Ignoring Power Query's case sensitivity in data interactions can turn into an issue that 
is time-consuming to identify. A real-world example is when we get globally unique 
identifier (GUID) values from a data source containing lowercase characters. Then, 
you get some other GUID values from another data source with uppercase characters. 
When we match the values in Power Query by merging the two queries, we may not get 
any matching values. In reality, if we turn the GUID containing lowercase characters to 
uppercase, we get actual matching values. While we do not get any error messages when 
comparing the two GUIDs, the result is incorrect if we do not have the two GUIDs with 
matching character cases.

For example, the following two GUID values are not equal from a Power Query point of 
view, while they are equal from a DAX point of view:

D5E99E0E-0737-45B2-B62A-4170B3FEFC0E

d5e99e0e-0737-45b2-b62a-4170b3fefc0e

Queries
In Power Query, a query contains expressions, variables, and values encapsulated by let 
and in statements. A let and in statement block is structured as follows:

let  

   Variablename = expression1,  

   #"Variable name" = expression2  

in   

   #"Variable name"

As the preceding structure shows, we can have spaces in the variable names. However, 
we need to encapsulate the variable name using a number sign followed by quotation 
marks—for example, #"Variable Name". By defining a variable in a query, we are 
creating a query formula step in Power Query. Query formula steps can reference any 
previous steps. Lastly, the output of the query is any variable that comes straight after 
the in statement. Each step must end with a comma, except the last step before the in 
statement.
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Expressions
In Power Query, an expression is a formula that results in values. For instance, the 
following screenshot shows some expressions and their resulting values:

Figure 3.1 – Expressions and their values

Values
As mentioned earlier, values are the results of expressions. For instance, in the top left of 
Figure 3.1, the expression is 2, resulting in 2 as a constant value.

In Power Query, values fall into two general categories: primitive values and structured 
values.

Primitive values
A primitive value is a constant value such as a number, a text, a null, and so on. For 
instance, 123 is a primitive number value, while "123" (including quotation marks)  
is a primitive text value.
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Structured values
Structured values contain either primitive values or other structured values. There are four 
kinds of structured values: list, record, table, and function values:

• List value: A list is a sequence of values shown in only one column. We can define  
a list value using curly brackets {}. For instance, we can create a list of small English 
letters as {"a".."z"}, as shown in the following screenshot:

Figure 3.2 – Defining a list of small English letters
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• Record value: A record is a set of fields that make a row of data. To create a record, 
we put the field name, an equals sign, and the field's value in brackets []. We 
separate different fields and their values by using a comma, as follows:

[

    First Name = "Soheil"

    , Last Name = "Bakhshi"

    , Occupation = "Consultant"

    ]

The following screenshot shows the expression and the values:

Figure 3.3 – Defining a record in Power Query

Note
When defining a record, we do not need to put the field names in quotation 
marks.

As illustrated in Figure 3.3, in Power Query Editor, records are shown 
vertically.



Introduction to the Power Query M formula language in Power BI     97

As stated before, a structured value can contain other structures' values. The following 
expression produces a record value containing a list value that holds primitive values:

[

    Name = {"Soheil", "John"}

    ]

The following screenshot shows the result (a record value containing list values):

Figure 3.4 – A structured value containing other structures' values

• Table value: A table is a set of values organized into columns and rows. Each 
column must have a name. There are several ways to create a table using several 
standard Power Query functions. Nevertheless, we can construct a table from 
lists or records. Figure 3.5 shows two ways to construct a table, using the #table 
keyword shown in the next code snippet.

1. Here is the first way to construct a table:

#table( {"ID", "Fruit Name"}                , {{1, 
"Apple"}, {2, "Orange"}, {3, "Banana"}})

2. Here is the second way to construct a table:

#table( type table [ID = number, Fruit Name = text] 
, {{1, "Apple"}, {2, "Orange"}, {3, "Banana"}} )
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The following screenshot shows the results:

Figure 3.5 – Constructing a table in Power Query
As you see in the preceding screenshot, we defined the column data types in the 
second construct, while in the first one, the column types are any.

The following expression produces a table value holding two lists. Each list contains 
primitive values:

 #table( type table 

            [Name = list]

                , {{{"Soheil", "John"}}}

                           )

We can expand a structured column to get its primitive values, as illustrated in the 
following screenshot:

Figure 3.6 – Table with a structured column
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The following screenshot shows the result after expanding the structured column to 
new rows:

Figure 3.7 – Table with an expanded structured column

• Function value: A function is a value that accepts input parameters and produces 
a result. To create a function, we put the list of parameters (if any) in parentheses, 
followed by the output data type. We use the goes-to symbol (=>), followed by a 
definition of the function.

For instance, the following function calculates the end-of-month date for the 
current date: 

()as date => Date.EndOfMonth(Date.From(DateTime.
LocalNow()))

The preceding function does not have any input parameters but produces an output. 
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The following screenshot shows a function invocation without parameters that 
returns the end-of-month date for the current date (today's date):

Figure 3.8 – Invoking a custom function

Types
In Power Query, values have types. There are two general categories for types: primitive 
types and custom types. 

Primitive types
A value can have a primitive type, as follows:

• binary

• date

• datetime

• datetimezone

• duration

• list

• logical

• null
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• number

• record

• text

• time

• type

• function

• table

• any

• none

Out of the values in the preceding list, the any type is an interesting one. All other  
Power Query types are compatible with the any type. However, we cannot say a value  
is of type any.

Custom types
Custom types are types we can create. For instance, the following expression defines  
a custom type of a list of numbers:

type { number }

Introduction to Power Query Editor
In Power BI Desktop, Power Query is available within Power Query Editor. There are 
several ways to access Power Query Editor, outlined as follows:

• Click the Transform data button from the Home tab, as illustrated in the following 
screenshot: 

Figure 3.9 – Opening Power Query Editor from the ribbon in Power BI
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• We can navigate directly to a specific table query in Power Query Editor by  
right-clicking the desired table from the Fields pane then clicking Edit query,  
as shown in the following screenshot:

Figure 3.10 – Navigating directly to a specific underlying query in Power Query Editor

Power Query Editor has the following sections:

3. The Ribbon bar

4. The Queries pane

5. The Query Settings pane

6. The Data View pane

7. The Status bar
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The following screenshot shows the preceding sections:

Figure 3.11 – Sections of Power Query Editor

In the next few sections, we will go through some features and tools available in Power 
Query Editor related to data modeling.

Queries pane
This section shows all active and inactive queries, including tables, custom functions, 
query parameters, constant values, and groups. In the next few sections, we discuss those.

Tables
This includes tables loaded from the data sources, tables created within Power BI using 
Enter Data, and tables that reference other queries. The icon for tables is .

Custom Functions
These are functions we create within Power Query Editor. We can invoke and reuse 
custom functions in other queries. The icon for custom functions is .
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Query parameters
We can parameterize various parts of our queries using query parameters that must be 
hardcoded otherwise. We can find the query parameters in the Queries pane under this 
icon: .

Constant values
In some cases, we may have a query with a constant result that can be a string, datetime, 
date, time zone, and so on. We can quickly recognize queries with a constant value output 
from their icon, depending on their resulting data type. For instance, if the query output 
is DateTime, then the query icon would be , or if the output is a string, then the 
iconography would be .

Groups
We can organize the Queries pane by grouping queries as follows:

8. Select relevant tables to group by pressing and keeping down the Ctrl key from your 
keyboard and clicking the desired tables from the Queries pane.

9. Right-click on the mouse and select Move To Group.

10. Click New Group… from the context menu.
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The following screenshot shows the steps outlined previously to group selected tables:

Figure 3.12 – Organizing queries in Power Query Editor

Organizing queries is recommended, especially in larger models that may have many 
queries referencing other queries.



106     Data Preparation in Power Query Editor

The following screenshot illustrates what organized queries may look like:

Figure 3.13 – Organized queries in Power Query Editor

Query Settings pane
This pane, located on the right side of the Power Query Editor window, contains all 
query properties and all transformation steps applied to the selected query (from the 
Queries pane). The Query Settings pane will not show up if the selected query is a query 
parameter. 
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The Query Settings pane has two parts: PROPERTIES and APPLIED STEPS, as 
illustrated in the following screenshot:

Figure 3.14 – Query Settings pane in Power Query Editor

Query Properties
We can rename a selected query by typing in a new name in the Name textbox. We can 
also set some other properties by clicking All Properties, as shown in the following 
screenshot:

Figure 3.15 – Query Properties from the Query Settings pane



108     Data Preparation in Power Query Editor

Here is what we can see in the preceding screenshot:

• Name: This is, again, the query name.

• Description: We can type in some description for the query. This is useful as it can 
help us with documentation.

• Enable load to report: When enabled, data will be loaded into the data model from 
the source system(s). As you see in Figure 3.15, we merged the Product query with 
two other queries. Each query may come from a different data source. When this 
option is disabled, data will not be loaded into the data model. However, if other 
queries reference this query, data will flow through all the transformation steps 
applied to this query.

• Include in report refresh: In some cases, we need data to be loaded into the model 
just once, so we do not need to include the query in the report refresh. When this 
option is enabled, the query gets refreshed whenever the data model is refreshed. 
We can either refresh the data model from Power BI Desktop when we click the 
Refresh button or we can publish the report to the Power BI service and refresh 
data from the service. Either way, if this option is disabled for a query, that query is 
no longer included in future data refreshes. 

Important note 
The Include in report refresh option is dependent upon the Enable load to 
report option. Therefore, if Enable load to report is disabled, then Include in 
report refresh will also be disabled.

It is a common technique in more complex scenarios to disable Enable load to 
report for some queries that are created as transformation queries. The other 
queries then reference these queries.

As the following screenshot shows, we can also access the query properties as well  
as the Enable load and Include in report refresh settings from the Queries pane by  
right-clicking on a query: 
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Figure 3.16 – Accessing Enable load and Include in report refresh settings from the Queries pane

Data View pane
The Data View pane is placed in the center of Power Query Editor. When selecting  
a query from the Queries pane, depending on the type of the selected query we see one  
of the following:

• A table with its underlying data when the selected query is a table, as shown in the 
following screenshot: 

Figure 3.17 – The Data View pane when the selected query from the Queries pane is a table
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• Enter Parameters, to invoke a function when the selected query is a custom 
function, as shown in the following screenshot:

Figure 3.18 – Data View pane when selecting a custom function from the Queries pane

• The results of the selected query. The following screenshot shows the Data view 
pane when the selected query retrieves the local date and time:
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Figure 3.19 – Data View pane when the query output is a constant value
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Note
Different transformation tools are available in the ribbon bar, depending on 
the data type of the results of the selected query. Figure 3.20 shows the results 
of a query that references the Environment parameter, which is a query 
parameter. So, the result of the Current Environment query varies 
depending on the values selected in the Environment query parameter. 

Figure 3.20 – Transformation tools available for a query resulting in a Text value

As we can see, the transformation tools available in Figure 3.19 and Figure 3.20 are 
different.
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Status bar
At the bottom of Power Query Editor, we have a status bar that includes some 
information about the selected query from the Queries pane, as shown in the following 
screenshot: 

Figure 3.21 – Status bar in Power Query Editor

In the preceding screenshot, we can see the following features:

1. Number of columns: We can quickly get a sense of how wide the table is.

2. Number of rows contributing to Column profiling: This enables us to indicate 
whether the profiling information provided is trustworthy. In some cases, the 
Column profiling setting shows incorrect information when calculated based on 
1000 rows (which is the default setting).

3. When the data preview refreshed. 

Advanced Editor
To create a new query or modify an existing query, we might use the Advanced Editor. 
The Advanced Editor is accessible from various places in Power Query Editor, as shown 
in Figure 3.22.
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To use the Advanced Editor, proceed as follows:

1. Select a query from the Queries pane.

2. Either click on Advanced Editor from the Home tab on the ribbon or right-click 
the query and select Advanced Editor from the context menu. Both options are 
illustrated in the following screenshot:

Figure 3.22 – Opening the Advanced Editor
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Introduction to Power Query features for data 
modelers
This section looks at some features currently available within Power Query Editor that 
help data modelers identify and fix errors quicker. Data modelers can get a sense of data 
quality, statistics, and data distribution within a column (not the overall dataset). For 
instance, a data modeler can quickly see a column's cardinality, how many empty values  
a column has, and so on and so forth.

Note
As previously mentioned, the information provided by the Column quality, 
Column distribution, and Column profile features is calculated based on 
the top 1000 rows of data (by default), which in some cases leads to false 
information. It is good practice to set Column profile to get calculated based 
on the entire dataset for smaller amounts of data. However, this approach 
may take a while to load the column profiling information for larger amounts 
of data, so be careful while changing this setting if you are dealing with large 
tables. 

To change the preceding setting from the status bar, proceed as follows:

1. Click the Column profiling based on top 1000 rows drop-down. 

2. Select Column profiling based on entire data set.
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The following screenshot illustrates how to do this:

Figure 3.23 – Setting column profiling to be calculated based on the entire dataset

Column quality
In Power Query Editor, we see a green bar under each column title that briefly shows 
the column's data quality. This green bar is called the Data Quality Bar. When we hover 
over it, a flyout menu shows up more data quality-related information. The following 
screenshot shows the data quality of the Size column from the Product table:

Figure 3.24 – Data Quality Bar in Power Query Editor
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While this is an excellent feature, it is still hard to efficiently get a sense of the data quality. 
There is another feature available in Power Query Editor called Column quality. The 
following steps show how to enable the Column quality feature:

1. In Power Query Editor, navigate to the View tab.

2. Tick Column quality.

3. More details will be shown in a flyout menu by hovering over the Column quality 
box for each column. 

As illustrated in the following screenshot, with the Column quality feature, we can 
quickly validate columns' values and identify errors (if any), valid values, and empty 
values by percentage. This is very useful for identifying errors. We can also use this feature 
to identify columns with many empty values so that we can potentially remove them later:

Figure 3.25 – Enabling Column quality in Power Query Editor
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We can also take some actions from the flyout menu by clicking the ellipsis button on the 
bottom right of the flyout menu, as shown in the following screenshot:

Figure 3.26 – Available options from the Column quality box flyout menu

The preceding screenshot shows that we can copy the data quality, which can be helpful 
for documentation. From the flyout menu, we can also take action on errors, such as 
removing any errors. It is a good practice to review and fix errors wherever possible, but 
we only tend to remove errors where necessary.

Let's look at other use cases for the Column quality feature to see how it can help us in 
real-world scenarios. For this scenario, we will use the Chapter 3, Query Editor.
pbix file.

We want to remove all columns from the Customer table with less than 10% valid data. 
The following steps show how to do this:

1. Open the Chapter 3, Query Editor.pbix file.

2. Open Power Query Editor.
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3. We can quickly look at the Quality box of all columns, and we can see that the 
following columns can be removed:

1. Title

2. Suffix

3. AddressLine2

The following screenshot shows that the preceding columns contain a lot of empty values:

Figure 3.27 – Using Column quality to identify columns with less than 10% valid data

We can remove those columns by doing the following:

1. Click the Home tab.

2. Click the Choose Columns button. 

3. Uncheck the preceding columns.

4. Click OK.
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The following screenshot shows the preceding steps:

Figure 3.28 – Removing columns

Column distribution
Column distribution is another feature that provides more information about the data 
distribution, distinct values, and unique values. The Column distribution information 
can help data modelers with the cardinality of a column. Column cardinality is 
an essential topic in data modeling, especially for memory management and data 
compression. 
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Note
The general rule of thumb is that we want to get lower cardinality. When the 
xVelocity engine loads data into the data model, it better compresses the low-
cardinality data. Therefore, the columns with lower cardinality have less (or no) 
unique values. 

We can consider whether we load that column into the model with the Column 
distribution feature or remove it from the model. Removing unnecessary columns can 
potentially help us with file-size optimization and performance tuning.

To enable the Column distribution feature, click the corresponding feature from the 
View tab, as shown in the following screenshot:

Figure 3.29 – Enabling Column distribution feature from Power Query Editor

After enabling this feature, a new box is added under the Column quality box visualizing 
the column distribution. If you hover over the Distribution Box, a flyout menu shows 
some more information about the column distribution, as depicted in the following 
screenshot:

Figure 3.30 – Distribution box flyout menu
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We can copy the distribution data from the flyout menu and take some other appropriate 
actions, as shown in the preceding screenshot.

Let's look at the Column distribution feature in action with a real-world scenario.

In Chapter 3, Query Editor.pbix, look at the Customer table. The Customer 
table is wide and tall. We want to nominate some columns for removal, to be discussed 
with the business, to optimize the file size and memory consumption:

1. Select the Customer table from the Queries.

2. Set the Column profiling to be calculated based on the entire dataset.

3. Quickly scan through the Column Distribution boxes of the columns to identify 
high cardinality columns.

These are the columns with high cardinality: 

• CustomerKey

• CustomerAlternateKey

• EmailAddress

• Phone

These columns are highlighted in the following screenshot:

Figure 3.31 – Identifying high-cardinality columns in the Customer table 
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The CustomerKey column is not a candidate for removal as it participates in the 
relationship between the Internet Sales and Customer tables in the data model. 
We can remove the CustomerAlternateKey column. This is an excessive column  
with very high cardinality (100% unique values), and it also does not add any value from  
a data-analysis point of view. The two other columns are excellent candidates to discuss 
with the business to see if we can remove them from the Customer table.

If we remove all three columns, we can reduce the file size from 2,485 kilobytes (KB) to 
1,975 KB. This is a significant saving in storage, especially in larger data models.

Column profile
So far, we have looked at the Column quality and Column distribution features. We 
can also enable the Column profile feature to see more information about a selected 
column's values. To enable this feature, tick the Column profile box under the View tab, 
as illustrated in the following screenshot:

Figure 3.32 – Enabling Column profile from Power Query Editor
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As the preceding screenshot shows, we can see Column Statistics and Value Distribution 
by enabling the Column profile feature. We can hover over the values to see the count 
number of that value and its percentage in a flyout menu. We can also take some actions 
on the selected value by clicking the ellipsis button on the flyout menu's bottom right, as 
illustrated in the following screenshot:

Figure 3.33 – Column profile

So far, we have discussed how the Power Query formula language works and how to use 
Power Query Editor in Power BI. We also looked at some features that can help us with 
our data modeling. In the next few sections, we discuss some more implementation-
related topics such as query parameters, and we go through some real-world scenarios 
using these parameters.

Understanding query parameters 
One of the most valuable features is the ability to define query parameters. We can 
then use defined query parameters in various cases. For instance, we can create a query 
referencing a parameter to retrieve data from different datasets, or we can parameterize 
filter rows. With query parameters, we can parameterize the following:

• Data Source

• Filter Rows

• Keep Rows
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• Remove Rows

• Replace Rows

In addition, we can load the parameters' values into the data model so that we can 
reference them from measures, calculated columns, calculated tables, and report elements 
if necessary.

We can easily define a query parameter from Power Query Editor, as follows:

1. Click Manage Parameters.

2. Click New.

3. Enter a name.

4. Type in some informative description that helps the user to understand the purpose 
of the parameter.

5. Ticking the Required box makes the parameter mandatory.

6. Select a type from the drop-down list.

7. Select a value from the Suggested Values drop-down list.

8. Depending on the suggested values selected in the previous step, you may need to 
enter some values (This is shown in Figure 3.34). If you selected Query from the 
Suggested Values drop-down list, then you need to select a query in this step.

9. Again, depending on the selected suggested values, you may/may not see the default 
value. If you selected List of values, then you need to pick a default value.

10. Pick or enter a value as the Current Value.

11. Click OK.
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The preceding steps are illustrated in the following screenshot:

Figure 3.34 – Defining a new query parameter

Note 
It is best practice to avoid hardcoding the data sources by parameterizing 
them. Some organizations consider their data source names and connection 
strings as sensitive data. They also only allow PBIT files to be shared within the 
organization or with third-party tools, as PBIT files do not contain data. So, if 
the data sources are not parameterized, they can reveal server names, folder 
paths, SharePoint Uniform Resource Locators (URLs), and so on. Using query 
parameters with Suggested Values of Any value makes perfect sense to avoid 
any data leakage. 
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The number of use cases for query parameters is quite vast. Let's have a look at a real-
world scenario when using query parameters comes in handy.

In this scenario, we want to parameterize the data sources. Parameterizing a data source 
is helpful in many ways, from connecting to different data sources to loading different 
combinations of columns. One of the most significant benefits of parameterizing data 
sources is to avoid hardcoding the server names, database names, files, folder paths,  
and so on.

The business has a specific BI governance framework that requires separate Development 
(Dev), User Acceptance Testing (UAT), and Production (Prod) environments. The 
business requires us to produce a sales analysis report on top of the enterprise data 
warehouse available in SQL Server. We have three different servers, one for each 
environment, hosting the data warehouse. While a Power BI report is in the development 
phase, it must connect to the Dev server getting the data from the Dev database. When 
the report is ready to go for testing in the UAT environment, both the server and the 
database must be switched to the UAT environment. When the UAT people have done 
their testing and the report is ready to go live, we need to switch the server and the 
database again to point to the Prod environment. To implement this scenario, we need 
to define two query parameters. One keeps the server names, and the other keeps the 
database names. Then, we set all relevant queries to use those query parameters. This will 
be much easier to manage if we start using the query parameters from the beginning of 
the project. But don't worry—if you currently have a Power BI report to hand and you 
would like to parameterize the data sources, the process is easy. Once you set it, you do 
not need to change any codes in the future to switch between different environments.  
Let's create a new query parameter, as follows: 

1. In Power Query Editor, click Manage Parameters.

2. Click New.

3. Enter the parameter name as Server Name.

4. Type in some description.

5. Tick the Required field

6. Select the Type as Text from the drop-down list.

7. Select List of values from the Suggested Values drop-down list.

8. Enter the server names in the list.

9. Select the devsqlsrv01\edw as the Default Value.

10. Pick the devsqlsrv01\edw again as the Current Value.

11. Click OK.



128     Data Preparation in Power Query Editor

The preceding steps are highlighted in the following screenshot:

Figure 3.35 – Creating a query parameter holding the server names for different environments
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We need to go through the same steps to create another query parameter for the database 
names. If the database names are the same, then we can skip this step. The following 
screenshot shows the other parameter we created for the database names:

Figure 3.36 – Creating a query parameter holding the database names for different environments
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If we already have some queries, then we need to modify the data sources as follows:

1. Click a query to parameterize.

2. Click the gear icon of the first step, Source.

3. Select Parameter from the Server drop-down.

4. Select the Server Name parameter from the server parameters drop-down.

5. Select Parameter again from the Database drop-down.

6. Select the Database Name parameter from the database parameters drop-down.

7. Click OK.

The preceding steps are highlighted in the following screenshot:

 

Figure 3.37 – Parameterizing a data source

We need to go through similar steps to parameterize other queries. After we have finished 
the parameterization, we only need to change the parameters' values whenever we want to 
switch the data sources. To do so from Power Query Editor, proceed as follows:

1. Click the Manage Parameters drop-down button.

2. Click Edit Parameters.

3. Select the UAT Server Name.

4. Select the UAT Database Name.

5. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 3.38 – Changing query parameters' values from Power Query Editor

We can also change the parameters' values from the main Power BI Desktop window,  
as follows:

1. Click the Transform data drop-down button.

2. Click Edit parameters.

3. Select the UAT Server Name.

4. Select the UAT Database Name.

5. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 3.39 – Changing query parameters' values from the main Power BI Desktop window

Understanding custom functions
In many cases, we may face a situation where we repeatedly need to calculate something. 
In such cases, it makes absolute sense to create a custom function that takes care of all the 
calculation logic needed. After defining a custom function, we can invoke this function 
many times. As stated in the Introduction to Power Query M formula language in Power 
BI section, under Function value, we can create a custom function by putting the list of 
parameters (if any) in parentheses, along with the output data type and the goes-to symbol 
=>, followed by a definition of the function.

The following example shows a straightforward form of a custom function that gets a date 
input and adds one day to it:

SimpleFunction = (DateValue as date) as date =>

Date.AddDays(DateValue, 1)

We can simply invoke the preceding function as follows:

SimpleFunction(#date(2020,1,1))
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The result of invoking the function is 2/01/2020.

We can define a custom function as an inline custom function and invoke it within  
a single query in the Advanced Editor. The following screenshot shows how we use  
the preceding code to define SimpleFunction as an inline custom function and invoke 
the function within the same query:

Figure 3.40 – Defining and invoking inline custom functions

Let's take a step further and look at a real-world scenario to see how we can save a massive 
amount of development time by creating a custom function.

We are tasked to build a data model on top of 100 tables. The initial investigation shows 
that the tables have between 20 and 150 columns. The column names are in camel case 
and are not user-friendly. We have two options: to manually rename every single column, 
or to find a way to rename all table columns in one go. While we have to do this for all 
tables, we can still save a lot of development time by renaming each table's columns in 
a single step. To achieve this goal, we can create a custom function. We will invoke that 
function in all tables later. 
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Let's look at the original column names in one table. The following screenshot shows the 
original column names of the Product table, which are not user-friendly. Note that in 
the status bar, we can see the number of columns a table has—in this case, the Product 
table has 37 columns. So, it would be very time-consuming if we were to manually rename 
every column and split the words to make them more readable:

Figure 3.41 – Original column names in the Product table

In our sample, splitting the column names when the character case is transitioning from 
lowercase to uppercase would be enough. Proceed as follows:

1. In Power Query Editor, create a blank query by clicking the New Source  
drop-down button and selecting Blank Query, as illustrated in the following 
screenshot:

Figure 3.42 – Creating a blank query from Power Query Editor
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2. Open Advanced Editor.

3. Copy and paste the script shown next in Step 4 in the Advanced Editor, and  
click OK.

4. Rename the query to fnRenameColumns, as shown in the following code snippet: 

let 

    fnRename = (ColumnName as text) as text => 

        let

            SplitColumnName = Splitter.
SplitTextByCharacterTransition({"a".."z"}, {"A".."Z"})
(ColumnName) 

        in 

    Text.Combine(SplitColumnName, " ")

in 

    fnRename

The following screenshot shows what the created function looks like in Power Query 
Editor:

Figure 3.43 – Creating a custom function

The preceding function accepts text values, then splits the text value to a list of texts 
whenever a case transition from lowercase to uppercase happens within the text. Then, 
we combine the split text and use a space character between the text. To understand how 
the preceding custom function works, we need to read through the documentation of the 
Splitter.SplitTextByCharacterTransition() function on the Microsoft 
Docs website. 

Note that the Splitter.SplitTextByCharacterTransition() 
function returns a function, therefore the Splitter.
SplitTextByCharacterTransition({"a".."z"}, 
{"A".."Z"})(ColumnName) part of the preceding script applies the 
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SplitTextByCharacterTransition function to the function input parameter, 
which is ColumnName, resulting in a list of texts.

Now, let's call the fnRenameColumns function in the Product table, as follows:

1. Enable Formula Bar if it is not enabled already from the View tab, as shown in the 
following screenshot: 

Figure 3.44 – Enabling the Formula Bar option in Power Query Editor

2. Select the Product table from the Queries pane.

3. From the Formula Bar, click the Add Step button ( ) to add a new step. This is 
quite handy as it shows the last step name, which we will use next. The following 
screenshot shows what the new added step looks like:

Figure 3.45 – Adding a new step from the Formula Bar

4. We now use the Table.TransformColumnNames() function, which 
transforms column names of a given table by a given name-generator function. 
This table comes from the previous step, and the name-generator function is the 
fnRenameColumns function we created earlier. So, the function will look like this:

Table.TransformColumnNames(#"Renamed Columns", 
fnRenameColumns)
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5. After committing to the running of this step, all columns in the Product table 
rename immediately, as the following screenshot shows:

Figure 3.46 – Renaming all columns at once

6. The very last step is to rename the new step to something more meaningful. To do 
so, right-click the step and click Rename from the context menu and type in a new 
name, as shown in the following screenshot:

Figure 3.47 – Renaming a query step
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Recursive functions
We can reference a function from the function itself, which makes that function a 
recursive function. Factorial is a mathematical calculation that multiplies all positive 
whole numbers from any chosen number down to 1. In mathematics, an exclamation 
mark shows a factorial calculation (for example, n!). The following formula shows the 
mathematical calculation of Factorial:

n! = n * (n – 1)!

As the preceding calculation suggests, a Factorial calculation is a recursive calculation. 
In a Factorial calculation, we can choose a positive integer (an integer larger than 0) 
when 0 is an exception; if 0 is chosen, then the result is 1. Here are some examples to 
make the Factorial calculation clearer:

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 =  3,628,800

5! = 5 * 4 * 3 * 2 * 1 = 120

1! = 1

0! = 1

To write a recursive function, we need to use an @ operator to reference the function 
within itself. For example, the following function calculates the factorial of a numeric 
input value:

let

   Factorial = 

        (ValidNumber as number) as number => 

            if ValiedNumber < 0

            then error "Negative numbers are not allowed to 
calculate Factorial. Please select a positive number."

            else

                if ValidNumber = 0

                then 1 

                else ValidNumber * @Factorial(ValiedNumber - 1)

in

    Factorial   
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As you see in the preceding code block, we raise an error message if the input value is not 
valid. We return 1 if the input is 0; otherwise, we calculate the Factorial recursively.

The following screenshot shows the result of invoking a Factorial function with an 
invalid number:

Figure 3.48 – Raising an error when invoking a Factorial function with an invalid value

The following screenshot shows the result of invoking a Factorial function to calculate 
10!:

Figure 3.49 – The result of invoking a Factorial function to calculate 10!
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Summary
In this chapter, we introduced different aspects of the Power Query M formula language 
and looked at how we can use Power Query Editor. We also looked at some real-world 
scenarios and challenges that can directly affect our productivity and learned how to 
manage our data preparation step more efficiently.

In the next chapter, we will discuss getting data from various data sources and several 
connection modes, and how they can affect our data modeling.



4
Getting Data from 

Various Sources
In the previous chapters, we discussed some aspects of data modeling, including various 
layers in Power BI, how the data flows between different layers, virtual tables in Data 
Analysis Expressions (DAX), and how they relate to data modeling. We also discussed 
how to leverage the power of query parameters and create custom functions in the Query 
Editor with the Power Query formula language.

In this chapter, we will learn how to get data from various data sources. We then walk 
through some known challenges and common pitfalls in getting data from some of 
those data sources. We will also discuss data source certification and different modes of 
connection to various data sources.

In this chapter, you will learn about the following topics:

• Getting data from common data sources

• Understanding data source certification

• Working with connection modes

• Working with storage modes

• Understanding dataset storage modes
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Getting data from common data sources
With Power BI, we can connect to many different data sources. In this section, we look 
at some common data sources that we can use in Power BI. We will also look at common 
pitfalls when connecting to those data sources. But before we start, let's take a moment 
to discuss a common misunderstanding across many Power BI developers and users 
on what get data means. When we say get data, we refer to connecting to a data source 
from the Power Query Editor, regardless of the data source type. Then, we create some 
transformation steps to prepare the data to be imported into the data model. 

While we are working in the Power Query Editor, we have not imported any data into the 
data model unless we click the Close and Apply button from the Home tab on the ribbon 
bar (or by clicking the Apply drop-down button). Just after we click the Close and Apply 
button, data starts being imported into the data model. At this point, you may ask: What 
is the data shown in the Data preview in the Power Query Editor? The answer is that the 
data shown in the Data preview is only sample data imported from the source system to 
show how the different transformation steps affect the data. Therefore, we are technically 
only connected to the data source and we created some transformation steps. Those steps 
will be applied to the data while importing the data into the data model.

Folder
Getting data from a folder is one of the most common scenarios when dealing with 
file-based data sources. You may have been given a folder containing a mix of altogether 
different file types, such as Excel, Access, comma-separated values (CSV), Portable 
Document Format (PDF), JavaScript Object Notation (JSON), a text file (TXT), and 
so on. The data structure can also be different, which can make working with the data 
more complex than it looks. One of the most powerful features of the folder connector in 
Power Query is that it automatically retrieves all files in the source folder, including those 
stored in the subfolders. While this is useful in many cases, it can be an issue when we do 
not want to combine the files stored in subfolders. For those cases, we can filter the results 
based on the Folder Path column to eliminate unwanted data stored in subfolders.

Let's look at the Folder data source with a scenario. One of the most common scenarios 
is when we have Excel files stored in a folder, and the business requires the data held by 
the Excel files to be analyzed.
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Our scenario is that the business needs to analyze the data stored in files exported from 
an Enterprise Resource Planning (ERP) system in a folder using an extract, transform, 
and load (ETL) tool. The ETL tool generates various file formats as outputs. However, the 
business only needs to analyze the data from the Excel files. The business archives old data 
in a folder called Archive, which must be excluded from the data model. We are tasked 
with importing the data from the Excel files stored in the Excel folder, excluding the files 
stored in the Archive folder. The following screenshot shows the folder's structure:

Figure 4.1 – The Excel folder includes an Archive folder that must be excluded from the data model

To achieve our goal, we go through the following steps:

1. In Power BI Desktop, click the Get data button.

2. From All, click Folder.

3. Click Connect.

4. Click Browse… and navigate to the corresponding folder.

5. Click OK.

6. Click Transform Data.
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The preceding steps are highlighted in the following screenshot:

Figure 4.2 – Getting data from the folder

The folder structure illustrated in Figure 4.1 shows that there are only three Excel files to 
be analyzed in the source folder. There are four files shown in the result in Figure 4.2. 

To fix this, we need to filter the results based on the Folder Path column, as the 
following screenshot shows:

Figure 4.3 – Filtering the results based on the Folder Path column

We should go through the following steps to filter the results:

7. Click on the filter dropdown.

8. Hover over Text Filters.
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9. Click Does Not Contain….

10. In the Filter Rows window, type in Archive as that is the subfolder containing 
data that we want to exclude from the data model.

11. Click the OK button.

The preceding steps are highlighted in the following screenshot:

Figure 4.4 – Eliminating the Archive folder

So far, we managed to get the correct files in the query results. The very last step is to 
combine the contents of the Excel files. To do so, follow these steps:

12. Click the Combine Files button on the Content column to open the Combine 
Files window, as shown in the following screenshot:

Figure 4.5 – Combining files from column
In the Combine Files window, we have the choice to select a sample file. Power BI 
will use this sample file to create a custom function on the fly to navigate all Excel 
files. From here, we have the following two options:

• Selecting a table (if any) or a sheet listed under Parameter1 

• Right-clicking Parameter1 and then clicking Transform Data
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Dealing with data stored in tables is generally more straightforward than when it is 
stored in sheets.

13. Click the Sales_Data table.

14. Click OK.

The preceding steps are highlighted in the following screenshot:

Figure 4.6 – Navigating Excel files to be combined

The preceding steps result in the creation of four new queries in the Power Query Editor, 
as shown in the following screenshot:
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Figure 4.7 – Queries and folders automatically created to combine the files

Let's have a look at the new four queries automatically created by the Power Query 
Editor, as follows:

• Parameter1: A query parameter of type Binary that is used in the Transform 
File custom function and the Transform Sample File query.

• Sample File: This query is our original query with one more step navigating to 
the first binary file, which is the first Excel workbook.

• Transform File: A custom function accepting Parameter1 as an input 
parameter. Then, based on our choice in the preceding Step 13, this navigates 
through the Excel file, reading the data either from a sheet or from a table (in our 
case, it is a table).

Transform Sample File: A sample query to open the Excel file using 
Parameter1. The sample query is disabled to load into the data model.

In some cases, we need to keep some files' metadata, such as Date Created 
(which you can see in Figure 4.4). There is some more detailed metadata stored 
in the Attribute column, which is a structured column of records. We leave 
this to you to investigate more. But for this scenario, we would like to keep the 
Date Created column for our future reference. We now need to modify an 
automatically created step, as follows:

15. Click the gear icon on the right side of the Removed Other Columns1 step.

16. Tick the Date Created column.

17. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 4.8 – Modifying the automatically created steps to keep some columns

We have successfully combined data stored in different Excel files stored in a folder. As 
you can see in the following screenshot, we can quickly find out which row is loaded from 
which file. We can also see when that Excel file was created, which comes in handy for 
people supporting the report in the future. A good use case is to track back errors and find 
out which Excel file is troublesome:
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Figure 4.9 – The results of combining Excel files stored in a folder

Finally, we rename the Excel table to Sales.

CSV/Text/TSV
While there is a dedicated connector for CSV and Txt files in Power BI, no specific 
connectors support tab-separated values (TSV) files. In this section, we will quickly look 
at those three file types. Let's continue with a scenario. 

In the previous sections of this chapter, we managed to import sales data stored in  
a folder. Now, the business received some data dumps stored in various formats. We  
have Product data in CSV format, Product Subcategory data in TSV format,  
and Product Category data in Txt format. We need to import the data from the  
files into Power BI. We use the Chapter 4, Get Data From Various Sources.
pbix file.

The following screenshot shows the files to import to Power BI:

Figure 4.10 – CSV, Txt, and TSV files to be imported to Power BI
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We start by getting data from the Product Category file, as follows: 

1. In Power Query Editor, click the New Source drop-down button.

2. Click Text/CSV.

3. Navigate to the folder holding sample files and select the Product Category.
txt file.

4. Click Open.

5. Power BI correctly detected the File Origin and the Delimiter, so click OK.

The preceding steps are illustrated in the following screenshot:

Figure 4.11 – Getting data from a Txt file

We are successfully connected to the Product Category.txt file from the Power 
Query Editor.
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With that, let's go ahead and get the Product Subcategory data, which is stored in a 
TSV file. As mentioned earlier in this section, there are currently no dedicated connectors 
for TSV files in Power BI. Nevertheless, that does not mean we cannot get the data from 
TSV files. As the name suggests, TSV files are indeed for storing data in text format, which 
is tab-delimited. Therefore, we must get the data from the TSV files using the Text/CSV 
connector. To do this, proceed as follows:

1. Click the New Source drop-down button again.

2. Click Text/CSV.

3. Navigate to the folder holding sample files, and select All files (*.*) from 
the file-type dropdown.

4. Now, the Product Subcategory.tsv file shows up, so select this file.

5. Click Open.

6. Power BI correctly detected the File Origin and the Delimiter, so click OK.

The preceding steps are highlighted in the following screenshot:

Figure 4.12 – Getting data from a TSV file
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So far, we quickly got data from text-based data sources in Txt and TSV file formats, and 
everything went quite smoothly. But that is not always the case. In reality, we may face 
many issues when dealing with any file-based data sources that are not curated. Let's look 
at one of the most common challenges we may face while dealing with text-based data. 
Now that we have got the Product Category and Product Subcategory data, 
it's time to move forward and get the Product data stored in CSV format. The process is 
the same as how we got the text data, so we do not repeat those steps. 

The quality bar of the ProductKey column in Figure 4.13 reveals some errors in that 
column. However, the Product table has only 607 rows, as shown in the status bar. Note 
that an error has occurred within the sample data. On other occasions, errors might not 
be evident until we import the data into the data model. In our case, we can scroll down 
through the data preview to find a cell that reproduces an error that happens to be right 
after where the ProductKey is 226. We then click on the erroneous cell to see the error 
message. 

Looking at the data more thoroughly reveals some other issues. There is an incorrect date 
value in the ProductAlternateKey column. The other issue is that the data type of 
the ProductSubcategoryKey column is also incorrect. The reason is trivial; there 
is also a date value for the ProductSubcategoryKey column that is supposed to 
be of type number. While we can remove the errors in some cases, the data looks to be 
legitimate in our case, but it shows up in an incorrect column. All this is illustrated in the 
following screenshot:

Figure 4.13 – Getting data from CSV-produced errors
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Let's have a look at the data in more detail. While we have only 607 rows of data, it makes 
sense to open the CSV file in a text editor such as Notepad++. 

Note
You can download Notepad++ for free from here: https://notepad-
plus-plus.org/downloads/.

Within Notepad++, we enable Show All Characters, and then we search the file where 
the ProductKey value is 226. So, it is now more obvious what has happened. For some 
reason, a carriage return (CR) and a line feed (LF) have been entered within the text. 

When we investigate more, it turns out that the EnglishProductDescription 
column has those characters. This issue can happen when the user presses the Enter key 
from the keyboard while typing the product description into the source system. Then, 
the exact data is exported from the source system into CSV. This issue may happen in 
any other column with type text. Some other issues in the data shown in the following 
screenshot are not trivial when we look at the data. Those issues did not produce any 
errors in the Power Query Editor either, so they can be a bit hard to spot. However, they 
could potentially cause some issues when we reconcile the data later:

Figure 4.14 – The Product.csv file opened in Notepad++ reveals some issues

https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
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While we already found the culprit, the same issue might have happened in other parts of 
the data where it is not that obvious. The easiest way to deal with the issue is to fix it in the 
source, but in our case we do not have access to the source anymore. Therefore, we have to 
fix the issue in the Power Query layer. We may have quickly thought that we could replace 
the (CR)(LF) characters with a blank. But the reality is that the (CR)(LF) characters 
represent a new row of data. Therefore, we cannot simply replace these with a blank and 
expect to get the issue sorted. 

Luckily, in our case, the issue is not that complex to fix. Looking at the erroneous rows, we 
can see that there was always a space character before the (CR)(LF) characters. This is 
also the case with the (LF) character. To fix the issue, we first need to get the text and fix 
the issues before we transform it into the table. While we can fix the issue that way, what 
if it happens again in the future in some other CSV files? In Chapter 3, Data Preparation 
in Power Query Editor, we learned how to create a custom function. To solve the issue we 
face in our scenario, we need a custom function that does the following:

1. Accepts a file path as a text value.

2. Opens the file as text.

3. Replaces all occurrences of (CR)(LF) (read Space, Carriage Return, Line 
Feed) with an empty string ("").

4. On the text results of the previous step, it replaces all occurrences of (LF) (read 
Space, Line Feed) with an empty string ("").

5. Transforms Text to Binary.

6. Opens the result of the previous step as CSV.

7. Promotes the first row as header.

8. Changes the column types.

With the following expression, we can create a custom function ticking the required 
boxes:

// fnTextCleaner

(FilePath as text) as table =>

let

    Source = File.Contents(FilePath),

    GetText = Text.FromBinary(Source),

    ReplaceCarriageReturn = Text.Replace(GetText, " #(cr,lf)", 
""),

    ReplaceLineBreaks = Text.Replace(ReplaceCarriageReturn, " 
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#(lf)", ""),

    TextToBinary = Text.ToBinary(ReplaceLineBreaks),

    #"Imported CSV" = Csv.Document(TextToBinary,[Delimiter=",", 
Columns=25, Encoding=1252, QuoteStyle=QuoteStyle.None]),

    #"Promoted Headers" = Table.PromoteHeaders(#"Imported CSV", 
[PromoteAllScalars=true]),

    #"Changed Type" = Table.TransformColumnTypes(#"Promoted 
Headers",{{"ProductKey", Int64.Type}, {"ProductAlternateKey", 
type text}, {"ProductSubcategoryKey", type number}, 
{"WeightUnitMeasureCode", type text}, {"SizeUnitMeasureCode", 
type text}, {"EnglishProductName", type text}, {"StandardCost", 
type text}, {"FinishedGoodsFlag", type logical}, {"Color", 
type text}, {"SafetyStockLevel", Int64.Type}, {"ReorderPoint", 
Int64.Type}, {"ListPrice", type text}, {"Size", type 
text}, {"SizeRange", type text}, {"Weight", type text}, 
{"DaysToManufacture", Int64.Type}, {"ProductLine", type text}, 
{"DealerPrice", type text}, {"Class", type text}, {"Style", 
type text}, {"ModelName", type text}, {"EnglishDescription", 
type text}, {"StartDate", type datetime}, {"EndDate", type 
datetime}, {"Status", type text}})

in

    #"Changed Type"

To create a custom function, we need to create a new blank query, open the Advanced 
Editor, then copy and paste the preceding scripts into the Advanced Query. We then 
rename the query to fnTextCleaner. We can then simply invoke the function with the 
Product.csv file to fix the issue, as follows:

1. Select the fnTextCleaner function from the Queries pane.

2. Type in the file path you stored the Product.csv file in.

3. Click Invoke.

4. This creates a new query named Invoked Function.

5. Rename the query as Product.
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The preceding steps are highlighted in the following screenshot:

Figure 4.15 – Invoking the fnTextCleaner function to fix the text issues in the Product.csv file

As shown in the preceding screenshot, we now get 606 rows, which is correct.

Excel
Excel is one of the most popular data sources used in Power BI. There is a dedicated 
connector for Excel, so it is straightforward to connect to an Excel data source. However, 
it is not always that simple to work with Excel data sources. In reality, there are many cases 
where we get an Excel file full of formulas referencing tables, columns, or cells from other 
worksheets, or even from other workbooks. In those cases, we may face some issues and 
get errors generated by the formulas. 

There are other scenarios where we get Excel files full of pivot tables having several 
dimensions. Power BI follows relational data modeling consisting of tables, and 
tables contain columns, so dealing with multidimensional pivot tables is not always 
straightforward. 
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Another common issue when dealing with Excel sources is merged cells leading to 
missing data in Power BI. You may think of many more different scenarios that make 
dealing with Excel data quite complex. This section looks at one of the most common 
scenarios: an Excel file containing a pivot table. The Yearly Product Category 
Sales.xlsx file is a sample Excel file we use in this scenario. The following screenshot 
shows the contents of this sample file:

Figure 4.16 – Yearly Product Category Sales data stored in Excel

The aim is to load the preceding pivot table into Power BI. To do this, proceed as follows:

1. In the Power Query Editor, click the New Source drop-down button.

2. Click Excel.

3. Navigate to the folder containing the Excel file and select the Excel file.

4. Click Open.

5. Select the Yearly Product Category Sales.xls sheet.

6. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 4.17 – Getting data from Excel

As looking at Figure 4.17 shows, Power BI already created some steps. Let's look at it more 
precisely to see how we can turn the pivot table into a regular table, as follows:

• The Changed Type step is not necessary, so we can remove it.

• We have to remove the Grand Total column appearing in Column8 and the 
Grand Total row appearing in row 19.

• We must fill in the missing data in Column1.



Getting data from common data sources     159

• The column headers of the first two columns appear in the data. We need to 
promote them as column headers.

• The year values must be shown in a column.

The preceding points are explained in the following screenshot: 

Figure 4.18 – Transforming a pivot table

Follow these next steps to fix the preceding issues one by one:

7. Remove the Change Type step.

8. Click the Column8 column.

9. Click the Remove Columns button from the Home tab, as shown in the following 
screenshot:

Figure 4.19 – The excessive step and column removed
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In the next few steps, we remove the Grand Total row, as follows:

10. Click the Remove Rows button from the Home tab and click Remove Bottom Rows.

11. Type 1 in the Number of rows textbox.

12. Click OK.

The preceding steps are highlighted in the following screenshot:

Figure 4.20 – Removing the bottom row
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Follow these steps to fill the missing items in Column1:

13. Click Column1.

14. Click the Fill button, then click Down.

The preceding steps are highlighted in the following screenshot:

Figure 4.21 – Filling missing values
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The next step is to promote column headers. To do this, we use Category and 
Subcategory and also year numbers as column headers. Proceed as follows:

15. Click Use First Row as Headers from the Home tab.

The following screenshot shows the preceding step. Note the results of the previous step  
to fill the missing values:

Figure 4.22 – Using the first row as a header

We now need to move the year numbers from column headers to columns. But the earlier 
step also added a Changed Type step that is still not necessary, so we need to remove that 
as well. To do that, we just need to unpivot the columns with year-number headers. The 
following steps take care of that:

16. Remove the Changed Type step by selecting it and clicking the X icon.

17. Select all columns with a year number by pressing down and holding the Ctrl key  
on your keyboard and clicking the columns.
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Note
You can select all columns between the first and last click in one go by pressing 
and holding the Shift key on your keyboard, selecting the first column, and 
then selecting the last column.

18. Right-click on any column header and click Unpivot Columns from the  
context menu.

The preceding steps are highlighted in the following screenshot:

Figure 4.23 – Removing unnecessary step and unpivoting columns

The very last steps are listed here:

19. Rename the Attribute column to Year and rename Value to Sales. 

20. Change all column types by selecting all columns. 
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21. Click the Detect Data Type button from the Transform tab, as shown in the 
following screenshot:

Figure 4.24 – Renaming columns and changing the columns' types

In this section, we dealt with a real-world challenge when working with Excel files. In the 
next few sections, we look at some other common data sources.

Power BI datasets
Power BI datasets are getting more and more popular when it comes to teamwork and 
collaboration. When we create a data model in Power BI Desktop and publish it to a 
Power BI service workspace, the data model turns to a dataset in the Power BI service. 
We then make the datasets available to others across the organization. This is an efficient 
method of collaboration in large Power BI projects. The data modelers create the models 
and publish them to the service, and the report writers make several reports on top of the 
shared datasets available to them. 

Note
 The Power BI datasets are not available in the Power BI free licensing plan.
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We can connect live to a Power BI dataset from Power BI Desktop, so Power BI Desktop 
turns to a data visualization tool. This means that Power Query and the data model are 
not accessible anymore. The reason is that the semantic model is now kept in the dataset. 
Therefore, if there is anything to be changed in the data model, those changes must then 
be applied to the dataset by the data modelers. 

Note
We will discuss different connection modes in this chapter in the Working with 
connection modes section.

When we connect live to a dataset, we can create report level measures within Power BI 
Desktop. The report level measures do not make any changes in the data model; they are 
only available within their containing report. Therefore, we cannot access those measures 
from any other reports of datasets. The following steps show the process to connect to  
a Power BI dataset:

1. Click the Get data button from the Home tab. 

2. Click Power Platform.

3. Click Power BI datasets.

4. Click Connect.

The preceding steps are highlighted in the following screenshot:

Figure 4.25 – Connecting to a Power BI dataset
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Alternatively, we can click the Power BI datasets button from the Data section from the 
Home tab, as shown in the following screenshot:

Figure 4.26 – Power BI datasets button from the Home tab

5. Select the desired dataset.

6. Click Create.

The preceding steps are highlighted in the following screenshot:

Figure 4.27 – Selecting an available dataset to connect to
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After we connect live to a dataset, only reporting features are available in Power BI 
Desktop, as outlined here:

• All tools in the Data section from the Home tab are disabled.

• The Transform data button that opens the Power Query Editor is disabled.

• All tools from the Modeling tab are disabled except the New measure and the 
Quick measure tools, which we can use to create report level measures with the 
current report.

• The Data tab disappears from the left pane, while the Report and Modeling tabs are 
still enabled. We will look at the Modeling tab later in this section.

The following screenshot shows the tooling changes in Power BI Desktop after connecting 
to a Power BI dataset:

Figure 4.28 – Power BI Desktop tooling changes after connecting to a Power BI dataset
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As we see in the preceding screenshot, the Model view is still accessible from the left pane. 
If we click the Model view, we can see all tables and their relationships, which is very 
handy to better understand the underlying data model. The following screenshot shows 
the Model view:

Figure 4.29 – Underlying data model of a connected Power BI dataset
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We can also create new layouts on top of the model, as shown in the following screenshot:

Figure 4.30 – Creating new layouts in the data model

There is one more point to note: we can only see and access the datasets from workspaces 
we are invited to. We also need to have Admin, Member, or Contributor permissions.

Power BI dataflows
A Power BI dataflow is a cloud experience for Power Query in a Power BI service, which 
opens endless self-service data preparation opportunities to organizations. It is pretty 
helpful to create a data preparation process in a dataflow that can be made available across 
an organization, increasing reusability and improving development efficiency. In Power 
BI, there is a dedicated connection for dataflows. 
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Note
Currently, DirectQuery to dataflows connection is in public preview. It is 
only available on the dataflows created in a workspace backed by a premium 
capacity.

If we already have an available dataflow, connecting to it is very easy. Follow these steps to 
connect to a Power BI dataflow:

1. Click the Get data dropdown.

2. Click Power BI dataflows.

3. A list of all dataflows available to you shows up in the Navigation window. Expand 
the desired workspace. 

4. Expand the dataflow model.

5. Select a table.

6. Click Load.

The preceding steps are highlighted in the following screenshot:

Figure 4.31 – Getting data from Power BI dataflows
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By clicking the Load button, we import the data from the dataflow into the Power BI data 
model.

SQL Server
SQL Server is one of the most used data sources for Power BI. When connecting to a 
SQL Server database, we choose to import the data into the data model or connect to 
the database in DirectQuery mode. We will discuss the connection modes later in this 
chapter. The following steps will help you to get data from a SQL Server data source, as 
also shown in Figure 4.32:

1. Click the SQL Server button from the Home tab.

2. Enter the Server name.

3. Depending on your case, you may want to enter the Database name (optional).

4. You can either select Import or DirectQuery.

5. Again, depending on your case, you may want to enter some Transact-SQL 
(T-SQL) scripts. To do so, click to expand the Advanced options.

6. Leave the Include relationship columns option ticked (untick this option to stop 
Power BI from detecting related tables when selecting a table from the Navigator 
page and clicking the Select Related Tables option).

7. Leave the Navigate using full hierarchy option unticked (tick this option if you 
would like to see the navigation based on database schemas).

8. If you have High Availability (HA) settings on the SQL Server instance, then tick 
the Enable SQL Server Failover support item; otherwise, leave it unticked.

9. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 4.32 – Getting data from SQL Server

10. Tick a desired table from the list, as shown in Figure 4.33.

11. Click the Select Related Tables button.

12. Depending on what you need to do next, you can either click the Load button 
to load the data into the data model or click the Transform Data button, which 
navigates you to the Power Query Editor.
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The preceding steps are highlighted in the following screenshot:

Figure 4.33 – Selecting a table and related tables from the Navigator window

Note
As shown in Step 5 in Figure 4.32, typing T-SQL queries disables query folding 
in Power Query, which potentially causes some performance degradation 
during the data refresh. We will discuss this more in Chapter 7, Data 
Preparation Common Best Practices, in the Query folding best practices section.
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SQL Server Analysis Services and Azure Analysis 
Services 
SQL Server Analysis Services (SSAS) has two different technologies, multidimensional 
and tabular models. Azure Analysis Services (AAS) is a Platform as a Service (PaaS) 
version of the tabular model in Azure. There is a dedicated connection for connecting 
to both types of on-premises versions of SSAS and another dedicated connector 
supporting AAS. When we connect from Power BI Desktop to SSAS or AAS, there are two 
connection types available to us: Connect Live and Import. If we select the Connect Live 
option, Power BI Desktop turns to a reporting tool only. In that case, the semantic model 
is hosted in either an on-premises instance of SSAS or an AAS instance. When we connect 
live to either SSAS Tabular or AAS, we can create report level measures. The report level 
measures are only available across the report, therefore they are not accessible within the 
underlying semantic model.

Note
It is advised not to use Import mode when connecting to either SSAS or 
AAS. When we create a model in Power BI, we are indeed creating a semantic 
model. Importing SSAS or AAS data into a Power BI model means creating a 
new semantic model on top of an existing semantic model. This is not ideal. 
Therefore, it is best to avoid Import mode unless we have a strong justification 
not to do so.

In December 2020, Microsoft announced a new version of composite models 
where we can turn a Connect Live connection to an AAS connection or a 
Power BI dataset to DirectQuery. Therefore, we can now connect to multiple 
AAS or Power BI datasets to build a single source of truth within an enterprise-
grade semantic layer in Power BI. We cover composite models in Chapter 12, 
Extra Options and Features Available for Data Modeling.

SSAS Multidimensional/Tabular
To connect to an instance of SSAS, follow these steps:

1. Click the Get data dropdown.

2. Click Analysis Services.

3. Enter the Server name.

4. Enter the Database name (optional).

5. Select the connection mode; if you happened to select Import, you could write 
Multidimensional Expressions (MDX) or DAX expressions to get a result set.
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6. Click OK.

The preceding steps are highlighted in the following screenshot:

Figure 4.34 – Connecting to SSAS

7. Select the model (you may see a different model name than the one shown in  
Figure 4.35).

8. Click OK.

The preceding steps are highlighted in the following screenshot:

Figure 4.35 – Connecting to the model
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AAS
Connecting to an instance of AAS is pretty much the same as connecting to an instance of 
SSAS. The only difference is that this time, we use its dedicated connector. We can find the 
Azure Analysis Services database connector under the Azure folder from the Get Data 
window, as shown in the following screenshot, so we do not go through the steps again:

Figure 4.36 – Connecting to an AAS tabular model

We can download a PBIX file directly from the Azure portal containing the connection to 
the desired model in AAS. The following steps explain how to do this:

1. After logging in to the Azure portal, navigate to your instance of AAS, then click 
Overview.

2. Find the model you would like to connect to and click the ellipsis button on  
the right.

3. Click Open in Power BI Desktop.
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The following screenshot shows the preceding steps:

Figure 4.37 – Opening AAS model in Power BI Desktop from the Azure portal

By going through the preceding steps, we download a PBIX file. In Power BI Desktop,  
we can open the file that is connected live to our AAS model.

OData Feed
Another most common data sources for Power BI in organizations is Open Data Protocol 
(OData). Many web services support OData, which is one of the reasons this type of data 
source is quite common. If the source system that is accessible via an OData connection 
is a Customer Relationship Management (CRM) or an ERP system, in that case the 
underlying data model contains many tables, and those tables may have many columns. 
In some cases, we have had experience of dealing with wide tables with more than 200 
columns, therefore having a good understanding of the underlying data model is essential. 
In this section, we describe how to connect to the underlying data model of Microsoft 
Project Web App (PWA), as follows:

1. In Power BI Desktop, click the Get data drop-down button. 

2. Click OData feed.
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3. Enter your PWA Uniform Resource Locator (URL). It must look like this: 
https://Your_Tenant.sharepoint.com/sites/pwa/_api/
Projectdata.  

4. Click OK.

5. Click Organizational account.

6. Click the Sign in button, then pass your credentials.

7. Click Connect.

The preceding steps are highlighted in the following screenshot:

Figure 4.38 – Connecting to Microsoft Project Online (PWA) with OData feed

8. Select the desired tables; in our sample, we selected the Project table.

9. Click either Load or Transform Data; we selected the Transform Data option.

https://Your_Tenant.sharepoint.com/sites/pwa/_api/Projectdata
https://Your_Tenant.sharepoint.com/sites/pwa/_api/Projectdata
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The preceding steps are highlighted in the following screenshot:

Figure 4.39 – Selecting tables from the Navigator page

As shown in the following screenshot, the Project table has 131 columns: 

Figure 4.40 – The Project table from the PWA data source in Power Query
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We may not need to load all those columns into the data model. Therefore, having a good 
understanding of the PWA database structure is essential. If we do not know much about 
the underlying data source, it is wise to involve the subject-matter experts (SMEs) from 
the business. They can help to identify the columns that are more relevant to the business. 

It is always good to have an idea of the number of tables, their columns, and the number 
of rows they contain. We provide a fnODataFeedAnalysis custom function in 
Chapter 7, Data Preparation Common Best Practices, in the General considerations section, 
and this can help to get that kind of information.

Understanding data source certification 
While data source certification leans toward Power BI governance, it is crucial to 
understand what it is and how it affects data modelers. The data source certification 
is more about the quality of data and assessing the level of trust we can build upon 
the data available in different data sources. This section will not explain the steps and 
processes of data source certification as it is out of this book's scope. The results of data 
source certification group our data sources into three (or more) categories. Different 
organizations use different terminology to refer to the quality of their data. This section 
uses Bronze, Silver, and Gold categories, indicating the quality of data contained in data 
sources. You may use different terms in your data source certification.

Bronze
The Bronze data sources contain uncurated data. The data has never been thoroughly 
quality controlled. While the data source may have valuable data it may have some 
duplications, or even incorrect data. The other factor that we may consider is the location 
in which the data is stored and not the quality of the data itself; for example, when we 
store Excel files in our personal OneDrive or Google Drive storage. The Bronze data 
sources are typically copied or exported from the web or some other source systems. 
Perhaps some SMEs have done some analysis on the data. However, the data is not 
necessarily in good shape to be consumed in analytical tools such as Power BI. The data 
may be stored in untrusted storage not managed by the organization (such as personal 
OneDrive storage). The most common data sources that fall into this category are 
uncurated Excel, CSV, and Txt files. Many organizations strictly ban using Bronze data 
sources as the contained data cannot be trusted and is prone to errors and incorrect 
figures. The maintenance costs associated with analyzing the Bronze data source are 
often relatively high. If you have to deal with Bronze data for any reason, consider 
more complex data preparation and higher maintenance costs while estimating the 
development.
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Silver
The Silver category is data that is semi-curated, and the organization manages the 
storage. While there might still be some data quality issues here and there, the data can 
be used in analytical tools to gain insights. Nevertheless, the data preparation costs are 
reasonable as the data is not in its best shape. The most common data sources categorized 
as Silver are transactional data sources stored by different technologies in different 
locations. These can typically be transactional databases hosted in SQL Server or Oracle, 
or Excel files stored in SharePoint or OneDrive for Business. Some organizations even 
consider some of their data warehouses as being a Silver data source, so it depends on 
how we define the boundaries.

Gold/Platinum
Gold or Platinum data sources are fully curated from both a data and business 
perspective. Data quality issues are minimal. The data is in its best possible shape to be 
analyzed and visualized in analytical and reporting tools such as Power BI. Typical Gold 
data sources can be semantic models hosted in SSAS, either multidimensional or tabular 
models, SAP Business Warehouse (SAP BW), data warehouses, and so on. When we 
deal with a Gold/Platinum data source, we are more confident that the data is correct. 
We expect almost zero data preparation and data modeling efforts from a development 
perspective.

Working with connection modes
When we get data from a data source, the query connection mode falls into one of the 
following three different categories:

• Data Import

• DirectQuery

• Connect Live

Every query connecting to one or more data sources in the Power Query Editor has any 
of the preceding connection modes, except Connect Live. When the connection mode is 
Connect Live, a Power BI model cannot currently connect to more than one instance of 
SSAS, AAS, or a Power BI dataset.
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Note
Microsoft released the preview of the new version of the composite models 
in December 2020. With the new version of composite models, we can 
DirectQuery to more than one instance of AAS or Power BI datasets. The new 
composite models currently do not support SSAS Tabular. We will discuss 
composite models in more detail in Chapter 12, Extra Options and Features 
Available for Data Modeling.

In this section, we look at the connection modes, their applications, and their limitations.

Data Import
This is the most common connection mode in Power BI Desktop. It is the only option in 
many connections, such as file-based connections. As its name suggests, the Data Import 
mode imports the data from the source system into the Power BI data model in a different 
shape. The data is already prepared and transformed in the Power Query layer; then, it is 
imported into the data model. We can refresh the data manually within Power BI Desktop 
or automatically after publishing it to the Power BI service.

Applications
The main application for the Data Import mode is consolidating data from different 
sources in a single source of truth. In addition, it gives us data modeling capabilities to 
create a semantic model in Power BI. We can frequently refresh the data throughout the 
day. All that goodness comes with some limitations, as outlined next.

Limitations
The Power BI datasets in Data Import mode have limited storage size and automatic data 
refreshes based on the licensing tier.  

Storage per dataset is limited to the following:

• 1 gigabyte (GB) per dataset under the free and Pro licensing plans

• 100 GB for datasets published to workspaces backed with a Premium Per User 
(PPU) capacity

• 400 GB for datasets published to workspaces backed with a Premium capacity
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Depending on our licensing tier, we can currently schedule the data refreshes from the 
Power BI service with the following restrictions:

• Up to once a day for the free licensing plan

• Up to 8 times a day for Power BI Pro 

• Up to 48 times a day for Power BI Premium and PPU

With the preceding restrictions in mind, if real-time or near-real-time data analytics is 
required, this mode may not be ideal.

DirectQuery
While the most common connection mode is the Data Import mode, for some 
data sources, an alternative approach is connecting directly to the data source using 
DirectQuery. When a connection is in DirectQuery mode, it does not import the data 
into the model. Instead, it fires multiple concurrent queries back to the data source, which 
can be a relational database data source, to get the results. 

Applications
This connection mode is ideal for supporting real-time data processing scenarios 
with minimal data latency when the data is stored in a relational database. The other 
application is when the 1 GB file size limit is not sufficient due to a large amount of data 
in the data source. While in DirectQuery mode we do not import any data into a data 
model, we still can create a data model with some limitations.

Limitations
Generally speaking, queries in DirectQuery mode are not as performant as similar queries 
in Import mode. DirectQuery fires concurrent queries back to the source system. So, 
if the source database system is not strong enough to handle many concurrent queries 
(or it is not well configured), performance issues can lead to timeouts. In that case, the 
underlying data model and, consequently, the reports will fail. 

If the queries in DirectQuery mode are complex, then we can expect poor performance. 
The other drawback is when many concurrent users are running the same report, leading 
to even more concurrent query executions against the source system.

Moreover, some DAX expressions and Power Query limitations apply to the DirectQuery, 
making this connection mode even more complex to use. 
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The DirectQuery is also limited to retrieve 1 million rows for the cloud sources and 4 
megabytes (MB) of data per row for an on-premises data source, or a maximum of 16 MB 
data size for the entire visual under the Power BI Pro license. The maximum row limit for 
Power BI Premium can be set under the admin-set limit.

Therefore, it is essential to undertake thorough investigations before deciding to use 
DirectQuery.

Connect Live
Connect Live mode is used when the report is connected to SSAS, including AAS, either 
Multidimensional or Tabular. Connect Live is indeed the recommended connection 
mode to be used for reporting in an enterprise business intelligence (BI) solution. In 
this connection mode, all business logics are captured in the semantic model and made 
available for all reporting tools within the SSAS instance we are connecting to. In this 
mode, the underlying data is kept on the SSAS side, so we do not import any data into 
Power BI. 

Applications
This connection mode is the desired connection mode when the source system is an 
instance of SSAS Tabular or Multidimensional. 

Limitations
When we connect live to an instance of SSAS, Power BI turns to a reporting tool only. 
Therefore, there are no Power Query or data modeling capabilities available under 
this connection model. Having said that, we can still see the underlying data model in 
Power BI Desktop. Moreover, we can create report level measures when connecting 
live to an SSAS Tabular model (this is not applicable when connecting live to SSAS 
Multidimensional). While we can see Power BI Desktop's underlying data model, we 
cannot make any changes to the data model. As all the data processing is done in the 
SSAS instance, the connecting SSAS instance must be strong enough to respond to the 
concurrent users.
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Working with storage modes
In the previous section, we discussed connection modes for the queries from a Power 
Query perspective. In this section, we look at different storage modes that apply to tables 
after the data is loaded into a data model or connected to a data source. Every table in  
a Power BI data model has a storage mode property that shows if the data is cached or not. 
There are three types of storage modes, as outlined next:

• Import: This means the data is cached into the memory. Therefore, all queries over 
a table with the storage mode of Import get the results from the cashed data.

• DirectQuery: The data is not cached; therefore, all queries are fired back to the 
source system to get the results.

• Dual: The tables in this mode can get data either from the cache or directly from 
the source system. So, depending on the query, data can be retrieved either from 
the cached data or directly from the data source. For instance, in an aggregation 
setup, the query results may come from the cached data or directly from the source, 
depending on the level we drill down. We will discuss aggregations in Chapter 9, 
Star Schema and Data Modeling Common Best Practices.

Note
All DirectQuery limitations described in the Working with connection modes 
section also apply to the tables with a Dual storage model setting. 

We can see or change the storage mode property from the Model view from the left pane 
in Power BI Desktop, as follows:

1. Click the Model view.

2. Select a table from the Fields pane.

3. Expand Advanced from the Properties pane.

4. Select a Storage mode from the drop-down list.
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The preceding steps are highlighted in the following screenshot:

Figure 4.41 – Changing the table's Storage mode property

Note
We cannot change a table's storage mode from Import mode to either 
DirectQuery or Dual mode.

In this section, we discussed the storage modes of tables. In the next section, we learn 
about dataset storage modes.
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Understanding dataset storage modes
As you may have already guessed, dataset storage modes refer to whether the data in  
a dataset is cached in the memory or not. With that in mind, from a dataset perspective, 
there are three different modes, as outlined next:

• Import: When the whole data is cached in the memory. In this mode, all tables are 
in the Import storage mode setting.

• DirectQuery: When the data is not cached in the memory. In this mode, all tables 
are in the DirectQuery storage mode setting.

• Composite (Mixed): When a portion of data is cached in the memory, while the 
rest is not. In this mode, some tables are in the Import storage mode setting; other 
tables are in DirectQuery storage mode or the Dual storage mode setting.

To see and edit the dataset storage modes in Power BI Desktop, look at the right side of 
the status bar, as shown in the following screenshot:

Figure 4.42 – Identifying dataset storage modes in Power BI Desktop
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As you see in the preceding screenshot, you can click on the bottom right of the status bar 
to change the storage mode, as shown in the following screenshot. Note that the storage 
mode for the Import modes cannot be changed: 

Figure 4.43 – Changing the dataset storage mode

Dataset storage mode is an essential point to think about at the beginning of the project. 
We need to make sure that the dataset storage mode we use in our Power BI model covers 
all the business needs. The dataset storage mode has a direct effect on our Power BI 
architecture. For instance, if a business requires minimal data latency or even real-time 
data analysis, DirectQuery would be a potential choice.

Summary
In this chapter, we learned to work with the most common data sources supported in 
Power BI, such as folders, CSV, Excel, Power BI datasets, Power BI dataflows, SQL Server 
SSAS, and OData feed, with some challenging real-world scenarios. We also went through 
data source certifications and discussed why it is essential to know which data source 
certification level we are dealing with. We then looked at connection modes, storage 
modes, and dataset modes, and at how different they are. It is worthwhile emphasizing 
the importance of understanding different connection modes, storage modes, and dataset 
modes as they will directly affect our data modeling and overall Power BI architecture.

In the next chapter, we look at common data preparation steps in the Power Query 
Editor, along with real-world scenarios.
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Common Data 

Preparation Steps
In the previous chapter, we discussed some data sources that are frequently used in 
Power BI. We also covered data source certifications and the differences between various 
connection modes, storage modes, and dataset modes. This chapter will look at common 
preparation steps such as common table manipulations, common text manipulations, and 
common Date, DateTime, and DateTimeZone manipulations.
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We will look at each of these by providing real-world scenarios that can help you deal with 
real daily data preparation challenges. Looking at the Power Query Editor, we can see that 
the data preparation activities are categorized into three separate tabs, as shown in the 
following screenshot:

1. Home: This tab contains more generic actions, such as creating a new query, 
creating or managing query parameters, and performing some common data 
preparation steps such as split column, group by, and more.

2. Transform: This tab contains more transformation functionalities that can be 
performed through the UI.

3. Add Column: This tab contains data preparation steps related to adding a new 
column through the UI:

Figure 5.1 – Data preparation functionalities available via the Power Query Editor UI

In the following few sections, we will look at some of the functionalities available under 
the preceding tabs and some that are not available in any of the preceding tabs. However, 
they are commonly used during the data preparation phase of data modeling.

This chapter will use the Chapter 5, Common Data Preparation Steps.pbix 
sample file unless stated otherwise. To use the sample file, open it in Power BI Desktop, 
then change the values of the following query parameters:

• Adventure Works DW Excel path

• Internet Sales in Time Excel path

• Approved Subcategories List path
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You can find the source files in GitHub via the following link:

https://github.com/PacktPublishing/Expert-Data-Modeling-with-
Power-BI.

In Power BI, we can get data from various sources in different formats. Regardless of 
the format of the data source, the quality of the data is also super important. There are 
some cases when we must deal with already transformed data, but in reality, there are 
many more cases where we need to transform the data and prepare it for analysis in 
the data model. A prevalent example is when the data source is Excel or CSV, and the 
data is pivoted. Therefore, we need to take that data into the operation room, perform 
some procedures on them, massage them a bit, and prepare them to get back to life in 
the analytical world. In this chapter, we'll look closer at the most commonly used data 
transformations and data manipulation functionalities in Power Query, including the 
following:

• Data type conversion

• Splitting a column by delimiter

• Merging a column

• Adding a custom column

• Adding a column from examples

• Duplicating a column

• Filtering rows

• Working with Group By

• Appending queries

• Merging queries

• Duplicating and referencing queries

• Replacing values

• Extracting numbers from text

• Dealing with Date, DateTime, and DateTimeZone

Let's dive into these topics and have a look at them in more detail.

https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI
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Data type conversion
Data type conversion is one of the most common steps we take in Power Query, yet it is 
one of the most important ones that can become tricky when it's not managed well. One 
cool feature of Power BI, if enabled, is that it can detect data types automatically. While 
this is a handy feature in many cases, it can be the root cause of some issues down the 
road. The critical point to note is how Power BI automatically detects data types. Power BI 
automatically detects column data types based on the first few hundred rows. 

This is when things can go wrong, as the data types are not detected based on the whole 
dataset. Instead, the data types are detected based on part of it. In most cases, we deal 
with data type conversion in table values. Either we use the Power Query Editor UI or 
manually write the expressions; here, we use the following function: 

Table.TransformColumnTypes(Table as table, TypeTransformations 
as list, optional Culture as nullable text)

In the Table.TransformColumnTypes() function, we have the following: 

• Table is usually the result of the previous step. 

• TypeTransformations accepts a list of column names, along with their 
corresponding data type. 

We already discussed the types available in Power Query in Chapter 3, Data Preparation in 
Power Query Editor, in the Introduction to Power Query (M) Formula Language in Power 
BI section, in the Types subsection. The following table shows the types, along with the 
syntax we can use to specify the data types:
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Table 5.1 – Power Query types, their representation, and their syntax

Let's look at this in more detail. We need to open the Chapter 5, Common Data 
Preparation Steps.pbix sample file:

1. Open Power Query Editor and select the Geography table from the Queries 
pane.

2. When we created the sample file, we did not change the data types. The last step is 
automatically created, and the data types are automatically detected.

3. Scroll the Data view to the right. Here, we can see that the Column Quality bar 
of the PostCode column turned red, which means there is an error in the sample 
data (the top 1,000 rows).

4. Scroll down a bit in the Data view to find an erroneous cell. Click a cell that's 
producing an error to see the error message.



194     Common Data Preparation Steps

5. As the following screenshot shows, the error was caused by an incorrect data type 
conversion:

Figure 5.2 – Errors caused by wrong data type detection by Power BI 
Fixing the issue is straightforward. Here, we must set the PostCode column data 
type to text, which is the correct data type. 

6. Click the column type indicator button.

7. Click Text.

8. Click the Replace current button on the Change Data Type message:
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Figure 5.3 – Changing a column data type

As shown in step 8, we do not get a new step in Applied Steps, but the issue is resolved. 
In the following screenshot, Column distribution shows no indication of any issues 
anymore:

Figure 5.4 – Data type conversion issue resolved
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In the preceding example, we quickly found and fixed the issue. But in many cases, data 
conversion issues and their fixes are not as trivial, even when we do not use the automatic 
data type detection feature. Let's continue using this sample file and load the data into the 
data model after fixing the data type issue with the PostCode column. 

Let's put a table on the report canvas with the Date column from the Date table. We'll 
see that the Internet Sales measure and another issue quickly appear. As shown in 
the following screenshot, the  Internet Sales values haven't been sliced correctly by 
the Date values:

Figure 5.5 – The Internet Sales measure is sliced by one Date only

In cases like this, a few things may go wrong that lead to incorrect values. So, we usually 
go through some initial checks to narrow down the possibilities and find the root cause(s) 
of the issue. The following are some of them:

• We look at the Model tab from the left pane to review the relationships.

• We look at the related columns to see if there are any missing values.

• We check the related columns to make sure the data types have been selected 
correctly.
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We know that the Date column from the Date table and the OrderDateTime column 
in the Internet Sales table participate in a relationship between the Date and 
Internet Sales tables. The following screenshot shows the preceding relationship:

Figure 5.6 – Relationship between the Date and Internet Sales tables
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Both columns also contain data, as shown in the following image:

Figure 5.7 – The Date column from the Date table and the OrderDateTime column from the Internet 
Sales table contributing to the relationship's data

Looking at the data types of both the OrderDateTime column in Internet Sales 
and the Date column in the Date table reveals that the data type of the Date column 
is Date, while the data type of the OrderDateTime column is DateTime. Those data 
types are compatible from a data modeling perspective. Nevertheless, the data in the 
OrderDateTime column has a time element. Therefore, the only matching values from 
the OrderDateTime column are those with a time element of 12:00:00 AM. To make 
sure this is right, we can do a quick test. 
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We can put three tables on the reporting canvas, as follows:

• Table1: Shows the Date column from the Date table

• Table2: Shows the OrderDateTime column from the Internet Sales table

• Table3: Shows the Date column from the Date table and the OrderDateTime 
column from the Internet Sales table side by side

The following screenshot shows the results:

Figure 5.8 – Date and OrderDateTime do not match

As you can see, there is only one match between the two columns. Now that we've 
identified the issue, the only step we need to take is to convert the OrderDateTime 
column's data type from DateTime into Date, as shown in the following image:

1. Open the Power Query Editor and select the Internet Sales table from the 
Queries pane.

2. Right-click the OrderDateTime column.

3. Click Date from the context menu under the Change Type submenu.
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4. Click the Replace current button:

Figure 5.9 – Changing the column's data type from DateTime to Date

Now, let's switch to the Report view and see the results. As shown in the following 
screenshot, the issue has been resolved:

Figure 5.10 – The correct results after changing the OrderDateTime column's  
data type from DateTime to Date
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As the preceding sample clearly shows, selecting an incorrect data type can significantly 
affect our data model. So, the critical point is that the key columns in both tables that are 
used in a relationship must contain the same data type.

Splitting column by delimiter
One of the most common transformation steps is Split column by delimiter. In many 
cases, we may need to split a column by a delimiter, such as when we have people's full 
names in our data. However, the business needs to have separate First Name, Middle 
Name, and Last Name columns. Let's look at an example. In the previous section, we 
converted the OrderDateTime column's type into Date. But what if the business 
requires us to analyze the Internet Sales data at both the Time and Date levels? We 
can do many things to satisfy this new requirement, such as the following:

• Create a new Time table, which can be done either using DAX (we discussed this 
in Chapter 2, Data Analysis eXpressions and Data Modeling, in the under Creating a 
Time dimension with DAX section) or within the Power Query Editor.

• Split the OrderDateTime column into two columns – one Date column and one 
Time column.

• Create a relationship between the Time and the Internet Sales tables.

We'll only look at the second option in this scenario; that is, splitting the 
OrderDateTime column by a delimiter. However, we've already converted the 
OrderDateTime column into Date. So, first, we need to convert it back into 
DateTime. We can take the same steps that we took in the previous section and change 
the data type of the OrderDateTime column to DateTime from the Power Query 
Editor. Once we've do that, we can go through the following steps:

1. In Power Query Editor, select the Internet Sales table from the left pane.

2. Select the OrderDateTime column.

3. Click the Split Column drop-down button from the Transform tab. This will give 
us seven different splitting options.

4. Click By Delimiter.

5. Select Space from the Select or enter delimiter drop-down list.

6. Tick the Left-most delimiter option.
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7. Click OK:

Figure 5.11 – Split column by delimiter

So far, we've added a new transformation step named Split Column by Delimiter 
to split the OrderDateTime column into two columns named (by default) 
OrderDateTime.1 and OrderDateTime.2. The following screenshot illustrates the 
results:

Figure 5.12 – Split column creates two new columns called OrderDateTime.1 and OrderDateTime.2

We will rename the columns in a separate step.
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Good Practice
Avoid creating excessive transformation steps when possible. More 
transformation steps translates into more data processing time and extra load 
on the Power Query engine.

With the preceding note in mind, we do not rename the two new columns as a new step. 
Instead, we change the Power Query expression of the Split Column by Delimiter step. 
There are two ways to do so:

A: Change the expressions from Advanced Editor, as shown in the following image:

1. Click Advanced Editor from the Home tab on the ribbon bar.

2. Find the #"Split Column by Delimiter" step.

3. Scroll to the right.

4. Change the column names.

5. Click Done:

Figure 5.13 – Changing the default column names of the splitter columns from the Advanced Editor

B: Change the expressions from Formula Bar, as shown in the following screenshot:

1. Click the Split Column by Delimiter step from Applied Steps.

2. Click the down arrow on Formula Bar to expand it.

3. Change the names of the columns.
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4. Click the Submit ( ) button:

Figure 5.14 – Changing the default column names of the splitter columns from the Formula Bar

The last thing we need to do is change the OrderDate column's data types to Date and 
the OrderTime column to Time.

Merging columns
A typical transformation under the Add Column category is Merge Columns. There 
are many use cases where we need to merge the data that's been spread across different 
columns, such as merging First Name, Middle Name, and Last Name to create 
a Full Name column, or merging a multipart address that's being held in separate 
columns (AddressLine1, AddressLine2) to get an Address column containing the 
full address. Another common use case is to merge multiple columns to create a unique 
ID column. Let's continue with an example from the Chapter 5, Common Data 
Preparation Steps.pbix sample file:

1. Select the Customer table from the Queries pane of Power Query Editor.

2. Select the First Name, Middle Name, and Last Name columns.

3. Right-click one of the selected columns and click Merge Columns. Alternatively,  
we can click the Merge Column button from the Transform tab (shown in yellow 
in the following image).

4. Select Space from the Separator dropdown.

5. Type Full Name into the New column name text box.
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6. Click OK:

Figure 5.15 – Merge Columns popup

After merging the three columns into one column, the output will look as follows:

Figure 5.16 – The three selected columns merged into one single column named Full Name



206     Common Data Preparation Steps

Adding a custom column
In my experience, adding a new column is one of the most common steps that we take 
during the data preparation phase. There are countless scenarios where we need to add 
a new column, such as adding some new analytical equations as a new column, creating 
data clusters in a new column, adding an index column as a new column, or using some 
machine learning (ML) and artificial intelligence (AI) algorithms. You may also have 
many other scenarios in mind. Whether we use the Power Query Editor UI or manually 
write the Power Query expressions, we must add a custom column using the following 
function:

Table.AddColumn(Table as table, NewColumnName as text, 
ColumnGenerator as function, optional ColumnType as nullable 
type)

In the Table.AddColumn() function, we have the following:

• Table: This is the input table value, which can be the result of the previous step or 
other queries that provide table output.

• NewColumnName: This is quite self-explanatory – it's the new column name.

• ColumnGenerator: The expressions we use to create a new column.

• ColumnType: This is used to specify the data type of the new column. This is an 
optional operand, but it is a handy one. More on this later in this section.

Let's continue with a scenario. In the Chapter 5, Common Data Preparation 
Steps.pbix sample file, we need to add a column to the Customer table to show if 
the customer's annual income is below or above the overall average income. To do so, 
we need to calculate the average annual income first. We have the annual income of all 
customers captured in the YearlyIncome column. To calculate the average income, we 
must reference the YearlyIncome column and calculate the average. We can reference 
a column within the current table by referencing the step's name, along with the column's 
name. So, in our case, because we want to get the average of YearlyIncome, the Power 
Query expression will look like this:

List.Average(#"Merged Columns"[YearlyIncome])

In the preceding expression, #"Merged Columns" is the name of the previous step. 
The result of referencing a column supplies a list of values, so by using the List.
Average(as list, optional precision as nullable number) function, 
we can get the average of the values of a list. In our example, this is the YearlyIncome 
column.
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Let's add a new custom column by following these steps:

1. Select the Customer table from the Queries pane.

2. Click the Custom Column button from the Add Column tab of the ribbon.

3. Type in a name for the new column.

4. Type in the expression shown in the following lines of code:

if [YearlyIncome] <= List.Average(#"Merged 
Columns"[YearlyIncome]) then true else false

5. Click OK:

Figure 5.17 – Adding a new custom column

In the preceding screenshot, we are specifying the operands of the Table.
AddColumn() function within the Power Query Editor UI, like so:

• Number 3 is the NewColumnName operand

• Number 4 is the ColumnGenerator operand
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The preceding steps result in a new custom column with TRUE or FALSE values 
indicating whether the customer's yearly income is below the average of all customers' 
yearly income. The following screenshot shows the results of the preceding steps:

Figure 5.18 – Result of adding a new custom column

As you can see, the new column's data type is any, while we expect the output to be 
logical. So, here, we have two options. The most trivial one that most developers do is 
add another Changed Type step to convert the new column into logical. This is not 
a good practice. What if we need to add some more custom columns? Are we going to 
add a Changed Type step after every new custom column? No, we do not need to add 
any extra steps after adding a new custom column. The second option, which is indeed 
a best practice to go for, is to use the ColumnType optional operand of the Table.
AddColumn() function. The following expression shows the use of the ColumnType 
optional operand within the Table.AddColumn() function:

Table.AddColumn(#"Merged Columns", "Is Yearly Income Below 
Average", each if [YearlyIncome] <= List.Average(#"Merged 
Columns"[YearlyIncome]) then true else false, type logical)
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The output now looks as follows, without us adding any new steps:

Figure 5.19 – Specifying the data type of the new custom column

We can use this column in our data model. We can then use this column in our data 
visualizations to analyze the data that's relevant to the customers' yearly income.

Adding column from examples
Adding column from examples is a brilliant feature of Power Query. It not only helps 
speed up the development process but also helps developers learn Power Query. The idea 
is that we can create a new column from sample data by entering the expected values in 
a sample column. Power Query then guesses what sort of transformation we are after 
and generates the expressions needed to achieve the results we entered manually. We can 
create new columns from selected columns or by all columns. Let's have a quick look at 
this feature by example.

We want to extract the usernames of the customers from their EmailAddress column, 
while the email structure is UserName@adventure-works.com, from the Customer 
table. The following steps show how we can achieve this by adding a column from 
examples:

1. Select the Customer table from the Queries pane.

2. Select the EmailAddress column.

3. Click the Column From Examples drop-down button from the Add Columns tab 
of the ribbon.
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4. Click the From Selection option:

Figure 5.20 – Adding a column from examples

5. Type in some expected results by double-clicking a cell and typing in a value, as 
shown here:

Figure 5.21 – Entering example values
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6. Press Enter on your keyboard. At this point, if Power Query correctly guessed what 
we are after, we can enter a name for the new column. Otherwise, we must continue 
entering more examples to help Power Query making a better guess.

7. Click OK:

Figure 5.22 – Naming the new column and confirming the new column from example

Note the section highlighted in the preceding image. We can learn how to write 
Power Query expressions by looking at the Power Query expressions appearing in the 
highlighted section. One of the drawbacks of this method is that it only allows us to enter 
the example for a couple of rows, which does not make the best pattern for Power Query 
to guess what we are after. The other downside is that Power Query cannot guess the logic 
of the entered examples in complex cases. Therefore, it does not work properly.

Duplicating a column
Another common transformation step under the Add Column tab is duplicating a 
column. In many scenarios, we may wish to duplicate a column, such as when we want 
to keep the original column available in our model while we need to transform it into a 
new column. Let's revisit the scenario that we looked at earlier in this chapter in the Split 
column by delimiter section. In that scenario, we split the OrderDateTime column from 
the Internet Sales table into two columns, Order Date and Order Time. In this 
section, we will do this another way. We will work on a duplicate table we created from 
Internet Sales before splitting the OrderDateTime column for this scenario. We 
will name the new table Internet Sales Duplicate. 
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Note
Duplicating a query will be explained in more detail in the Duplicating and 
referencing queries section of this chapter.

The following steps show how to achieve this:

1. Select the Internet Sales Duplicate table from the Queries pane.

2. Select the OrderDateTime column.

3. Click the Duplicate Column button from the Add Column tab of the ribbon  
(the duplicate column can also be accessed by right-clicking the column). This 
creates a new column called OrderDateTime – Copy:

Figure 5.23 – Selecting and duplicating a column

4. Change the type of the OrderDateTime column to Date.

5. Change the type of the OrderDateTime – Copy column to Time:



Duplicating a column     213

Figure 5.24 – Changing the columns' types

6. Rename the OrderDateTime column to Order Date and rename the 
OrderDateTime – Copy column to Order Time:

Figure 5.25 – Renaming the columns

We could rename the OrderDateTime - Copy column in Duplicated Column 
itself by changing the expression from Table.DuplicateColumn(Internet_
Sales_with_Time_Table, "OrderDateTime", "OrderDateTime - 
Copy") to Table.DuplicateColumn(Internet_Sales_with_Time_Table, 
"OrderDateTime", "Order Time") to reduce the transformation steps. However, 
since we also need to rename the OrderDateTime column, it makes sense to rename 
both columns in a single step.
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Note
This approach has no advantages over the previous approach, where we Split 
column by delimiter. So, it is down to the developer's preference to take on any 
of the explained approaches.

Filtering rows
The other common transformation is Filtering rows. There are many use cases where we 
may want to restrict the results by specific values. For instance, we may want to filter the 
Product table to show the products with a Status of Current. Filtering the rows 
based on columns' values is very simple. We have to select the desired column, then click 
the arrow down button ( ) from the column's caption, and select the values we want to 
use for filtering the rows. This is shown in the following screenshot:

Figure 5.26 – Filtering rows

While this is a straightforward step to take, not all filtering use cases are simple, such as 
when we do not have specific values to filter the rows upon. However, we have a list that 
the business provided, specifying the values to use in the filters. Let's look at this with a 
scenario.

The business provides a list of Approved Product Subcategories every season in 
Excel format. We need to filter the Product table on the Product Subcategory 
column by the Approved Product Subcategories column from the Approved 
Subcategories table. We've already connected the Chapter 5, Common Data 
Preparation Steps.pbix sample file to the Approved Subcategories List.
xlsx file, as shown in the following screenshot:
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Figure 5.27 – Approved Subcategories

To filter a column in a table by the values of a column from another table, we need to 
know how to reference a column from another table. We can reference a column from 
another table like so:

#"Query_Name"[Column_Name]  

The result of the preceding structure is a list value. In our scenario, the Approved 
Product Subcategories column from the Approved Subcategories table 
filters the Product Subcategory column from the Product table. So, we can use 
the List.Contains(list, values) function to get the matching values with the 
following structure:

List.Contains(#"Referenced_Table"[Referenced_Column], [Column_
to_be_Filtered]
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So, the List.Contains() function in our scenario looks like this:

List.Contains(#"Approved Subcategories"[Approved Product 
Subcategories], [Product Subcategory])

We can use the Power Query Editor UI to filter the Product Subcategory column 
from the Product table with a dummy value. Then, we can replace that value in the code 
with the List.Contains() function. Follow these steps to get this done:

1. Select the Product table from the Queries pane.

2. Filter the Product Subcategory column by any value; we used Bike Racks  
in the filter.

3. Click OK:

Figure 5.28 – Filtering the rows of the Product table by a value of the Product Subcategory column
The following is the Power Query expression that the UI generates:

= Table.SelectRows(#"Removed Other Columns", each 
([Product Subcategory] = "Bike Racks"))
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As shown in the following screenshot, the generated expression looks like this:

Figure 5.29 – Power Query expression generated by the Power Query Editor UI
The Table.SelectRows(table, condition) function accepts a table, 
which is the previous step, named #"Removed Other Columns", and a 
condition, called each ([Product Subcategory] = "Bike Racks").  
So, here is how we read the preceding code in natural English:

Select rows from the #"Removed Other Columns" step where each value in the 
Product Subcategory column is "Bike Racks".

We want to change the preceding code so that we can select rows from 
the #"Removed Other Columns" step where each value in the 
Product Subcategory column is contained in the Approved Product 
Subcategories column from the Approved Subcategories table. 
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Now, let's continue.

4. We need to change the condition parameter of the Table.
SelectRows(table, condition) function from ([Product 
Subcategory] = "Bike Racks") to List.Contains(#"Approved 
Subcategories"[Approved Product Subcategories], [Product 
Subcategory]), as shown here:

Figure 5.30 – Changing the condition of the Table.SelectRows function

The Product table is now being filtered by the values of the Approved Product 
Subcategories column from the Approved Subcategories table.

Working with Group By
One of the most valuable and advanced techniques in data modeling is creating summary 
tables. In many scenarios, using this method is very beneficial. We can use this method to 
manage our Power BI file's size; it also improves performance and memory consumption. 
Summarization is a known technique in data warehousing where we want to change the 
granularity of a fact table. But in Power Query, there are other cases where we can use 
the Group By functionality to cleanse data. Nevertheless, from a data modeling point of 
view, we summarize a table by grouping by some descriptive columns and aggregating the 
numeric values.

Let's go through a scenario and see how the Group By functionality works. 
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Note
The Group By operation changes the table's structure. To keep the 
Internet Sales table unchanged for the future scenarios in this chapter, 
we will reference the Internet Sales table and name it Internet 
Sales Summary. We'll use that table in the following steps.

We want to summarize the Internet Sales Summary table by the following 
columns:

• ProductKey

• CustomerKey

• SalesTerritoryKey

• Order Date

Then, we would like to aggregate the following columns by the Sum operation:

• SalesAmount

• OrderQuantity

• TaxAmt

• Freight

To achieve the goal of the preceding scenario, follow these steps:

1. Select the Internet Sales Summary table from the Queries pane.

2. Select the columns mentioned previously that are participating in the group  
by action.

3. Click the Group By button from the Transform tab of the ribbon.

4. Type in Sales Amount for New column name.

5. Select the Sum operation.

6. Select the SalesAmount column.

7. Click the Add aggregation button.

8. Repeat steps 4 to 8 to add the other aggregations.
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9. Click OK:

Figure 5.31 – Group By columns in Power Query

The result of the preceding operation will look as follows:

Figure 5.32 – Result of the Group By operation
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We can then load the summary table into the model and create a relationship. Usually, 
the summary table has much fewer rows than the original table. In some cases, due to 
business requirements, we must unload the original table from the data model and only 
use the summary table. 

Appending queries
There are some scenarios where we get data with the same structure from different 
sources, and we want to consolidate that data into a single table. In those cases, we need to 
append the queries. We have two options to append the queries:

• Append the queries to the first query

• Append the queries as a new query

The latter is prevalent when we follow ETL best practices. We unload all the queries, 
append the queries as a new query, and load them into the data model. Therefore, all the 
unloaded queries work as ETL pipelines. This does not mean that the first option is not 
applicable. 

Suppose we have a simple business requirement that can be achieved by appending 
two or more queries to the first query. In that case, we may wish to use the first option 
instead. The critical point to note when we're appending queries is that the Table.
Combine(tables as list, optional columns as any) function accepts 
a list of tables. When the column names in the tables are the same, it appends the data 
under the same column name, regardless of the columns' data types. Therefore, if we have 
two tables and both tables have a Column1 column, then the data of those two columns, 
regardless of their data types, will be appended with the same column name. 
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If the data types do not match, then the data type will be any. Remember, Power Query is 
case sensitive. Therefore, if we have the column1 column in Table1 and the Column1 
column in Table2, those columns will be treated as different columns when we 
append the two tables. So, we end up having a table with both column1 and Column1 
columns. Let's look at an example. For this example, we will use Chapter 5, Append 
Queries.pbix sample file, which contains sales data for different years in different file 
formats. As shown in the following screenshot, we have three separate queries for each 
year's sales data:

Figure 5.33 – Sales data spread across three separate queries coming from different data sources

We need to consolidate these queries into a single Sales query. Therefore, let's append 
the three queries into a new query named Sales:

1. Select the 2012 Sales Data query from the Queries pane.

2. Click the Append Queries drop-down button from the Home tab of the ribbon.

3. Click the Append Queries as New.

4. Click Three or more tables.

5. Select 2013 Sales Data and 2014 Sales Data from the Available tables 
list.

6. Click the Add>> button.

7. Click OK:
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Figure 5.34 – Appending queries as a new query
The preceding steps create a new query named Append1. 

1. Rename the query to Sales.

2. Unload all the queries that we appended by right-clicking on 2012 Sales D.

3. Untick the Enable load option as shown in the following image:

Figure 5.35 – Renaming the Append1 query and unloading the original queries
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Looking at the results of the preceding steps raises an issue with the data. The following 
screenshot highlights this issue:

Figure 5.36 – There are two ProducyKey columns as a result of the case sensitivity of Power Query

As shown in the preceding screenshot, there are two Product Key columns – one called 
ProductKey and another called Productkey. This is a result of Power Query's case 
sensitivity. So, we need to rename one of those columns from the sourcing query. Looking 
at these queries reveals that the Productkey column comes from the 2012 Sales 
Data query, while the other two queries contain ProductKey. We'll leave this issue for 
you to fix.

Merging queries
The Merge Queries functionality is one of the other common transformation operations 
we may use in Power Query. The merge queries functionality is useful when you want to 
denormalize snowflakes and absorb the data that's stored in different tables into one table. 
Power Query uses one of the following functions behind the scenes when we use Merge 
Queries from the Power Query Editor UI, depending on the matching type we select via 
the UI. This can be seen in the following screenshot:
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Figure 5.37 – Merging queries via the UI uses different Power Query functions,  
depending on the matching type

If we do not tick the Use fuzzy matching to perform the merge box, then the following 
function will be generated by the Power Query Editor:

Table.NestedJoin(FirstTable as table, KeyColumnofFirstTable 
as any, SecondTable as any, KeyColumnofSecondTable as any, 
NewColumnName as text, optional JoinKind as nullable JoinKind.
Type)
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Otherwise, the Power Query Editor will generate this one:

Table.FuzzyNestedJoin(FirstTable as table, 
KeyColumnofFirstTable as any, SecondTable as table, 
KeyColumnofSecondTable as any, NewColumnName as text, optional 
JoinKind as nullable JoinKind.Type, optional JoinOptions as 
nullable record)

In both preceding functions, the join kind is optional, so if it's not specified, Left Outer 
is used. We can choose to either use numeric enumerations to specify the join kind 
or explicitly mention the join kind. The following table shows the join kinds and their 
respective enumerations:

Table 5.2 – Power Query Join Kinds in Merge Queries

A difference between the Table.NestedJoin() function and the Table.
FuzzyNestedJoin() function is that the Table.NestedJoin() function uses the 
equality of the key columns' values, while the Table.FuzzyNestedJoin() function 
uses text similarities on the key columns.

Important Notes for Merging Two Queries
Merge Queries allows you to have composite key columns in the merging 
tables; therefore, we can select multiple columns while selecting the key 
columns of the first table and the second table.

There are six different join types. Therefore, we need to understand how the 
join types are different and which join types suite our purpose.
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In this section, we will focus on the join kinds and how they are different:

• Inner: Joins two queries based on the matching values of the key columns from 
both tables participating in the join operation.

• LeftOuter: Joins two queries based on all values of the key columns from the  
first table and matches the values of the key columns from the second table.

• RightOuter: Joins two queries based on all the values of the key columns from 
the second table and matches the values of the key columns from the first table.

• FullOuter: Joins two queries based on all the values of the key columns from 
both tables participating in the join operation.

• LeftAnti: Joins two queries based on all the values of the key columns from  
the first table that do not have any matching values in the key columns from the 
second table.

• RightAnti: Joins two queries based on all the values of the key columns from  
the second table that do not have any matching values in the key columns from the 
first table.

Let's use a graphical representation of different joins to understand this:

Figure 5.38 – Different join kinds
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We already went through a scenario in Chapter 1, Introduction to Data Modeling in 
Power BI, in the Star Schema (dimensional modeling), snowflaking section where we 
denormalized the Product Subcategory and Product Category tables into the 
Product table. Therefore, we will not explain this again. For your reference, we used the 
Adventure Works, Internet Sales.pbix sample file.

Duplicating and referencing queries
Duplicating and referencing a query are somehow similar. We duplicate a query when we 
need to have all the transformation steps we already took on the original query. At the 
same time, we want to change those steps or add some more transformation steps. In that 
case, we must change the original query's nature, translating it so that it has a different 
meaning from a business point of view. But when we reference a query, we are referencing 
the final results of the query. Therefore, we do not get the transformation steps in the 
new query (the referencing query). Referencing a query is a common way to break down 
the transformation activities in a more organized way. This is the preferred way of doing 
data preparation for most Extract, Transformation, and Load (ETL) experts and data 
warehousing professionals. In that sense, we can do the following:

• We can have base queries that are connected to the source system that resemble the 
Extract part of the ETL process.

• We can reference the base queries and go through the Transformation steps of the 
ETL process.

• Finally, we can reference the transformation queries to prepare our Star Schema. 
This is the Load part of the ETL process.

In the preceding approach, we unload all the queries for the first two points as they are 
our transformation steps, so we only enable data load for the queries of the Load part 
(the last point). Duplicating and referencing a query is simple; right-click a desired query 
from the Queries pane and click either Duplicate or Reference, as shown in the following 
screenshot:
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Figure 5.39 – Referencing or duplicating a query

Notes
When we reference a query, we have to be vigilant about making changes to the 
base query. Any changes to the base query may break the referencing query or 
queries. 

When the base query is loaded into the data model, if we make changes to the 
base query and load the data into the data model, the base query and all the 
queries referencing it will be refreshed. However, this is not the case when we 
duplicate queries. The duplicated query is independent of its base query.

So far, we've looked at the most common table manipulations in Power Query. In the next 
section, we'll look at common text manipulations.

Replacing values
A critical part of data preparation is data cleansing. When it comes to data cleansing, 
replacing values is one of the most common transformation activities we perform. A 
simple example is where we have a description column in which the users of the source 
system enter free text data, and we would like to replace some part of the description with 
something else. 
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When we use the Power Query Editor UI to replace a value in a table, it uses the  
Table.ReplaceValue(table as table, OldValue as any, NewValue 
as any, Replacer as function, columnsToSearch as list) function 
behind the scenes. If we want to replace the value of a List, it uses the List.
ReplaceValue(list as list, OldValue as any, NewValue as any, 
Replacer as function) function. Depending on the value's data type that we 
want to replace, the Replacer function can be either Replacer.ReplaceText 
or Replacer.ReplaceValue. The difference between the two is that we can use 
Replacer.ReplaceText to replace text values, while we can use the Replacer.
ReplaceValue to replace any values. Replacing a value from the UI is relatively simple, 
as follows:

1. Click a column that we want its values to be replaced. 

2. Click Replace Values from the context menu.

3. If the selected column's type is text, then more options are available to us under 
Advanced options, such as Replace using special characters. In our example,  
we want to replace semicolons with colons.

4. Type ; into the Value To Find text box.

5. Type in , into the Replace With text box.

6. Click OK:

Figure 5.40 – Replace Values popup

However, in most real-world cases, we face more challenging scenarios. Let's look at some.
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The business requires us to show product descriptions in a table visualization. There are 
some long descriptions. The business wants to cut off excessive text in the Description 
column from the Product table when the description's length is greater than 30, and 
then show "…" at the end of the description. These three dots indicate that the text values 
in the Description columns have been cut. The following steps show how to use the 
Power Query Editor UI to generate the preliminary expression and how we change it to 
achieve our goal:

1. Select the Description column.

2. Click the Replace Values button from the Transform tab of the ribbon.

3. Type in dummy values in both the Value To Find and Replace With text boxes.

4. Click OK:

Figure 5.41 – Replacing a dummy value

5. In the generated expression, replace the TO_BE_REPLACED string with the 
following expression:

each if Text.Length([Description]) > 30 then [Description] else 
""
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6. Replace REPLACING_WITH with the following expression:

each Text.Start([Description], 30) & "..."

7. Click the Submit ( ) button.

The overall expression must look like this: 

= Table.ReplaceValue(#"Replaced Value", each if Text.
Length([Description]) > 30 then [Description] else "", 
each Text.Start([Description], 30) & "...", Replacer.
ReplaceText,{"Description"})

The preceding code block will return the following output:

Figure 5.42 – Cutting off the values in the Description column that are longer than 30 characters

We may need to replace values based on values from another column or based on 
values from another query in some other scenarios. Replacing values is a widespread 
transformation step, and there are many scenarios that are virtually impossible to cover  
in this section.
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Extracting numbers from text
Another common data preparation step is when we need to extract a number from text 
values. An excellent example is when we want to extract a flat number or a zip code from 
an address. Other examples include extracting the numeric part of a sales order number 
or cleaning fullnames of typos, such as when some names contain numbers. In our 
scenario, we want to add two new columns to the Customer table, as follows: 

• Extract Flat Number as a new column from AddressLine1 

• Extract the rest of the address, Street Name, as a new column

The AddressLine1 column reveals that the flat number appears in different parts of the 
address; therefore, splitting by transitioning from digit to non-digit would not work:

Figure 5.43 – Flat Number appears in different places in AddressLine1

To achieve our goal, we need to extract the numbers from text. To do so, we can use the 
Text.Select(Text as nullable text, SelectChars as any) function  
to get the job done. Follow these steps:

1. Click the Custom Column button from the Add Column tab of the ribbon.

2. Type in Flat Number as New column name.
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3. Type in the following expression:

Text.Select([AddressLine1], {"0".."9"})

4. Click OK.

The following screenshot shows the preceding steps:

Figure 5.44 – Extracting Flat Number from Address as a new column

Now, we will use the same function with a different character list to extract the street 
name from AddressLine1, as follows:

1. Click the Custom Column button again to add a new column.

2. Type in Street Name as New column name.

3. Type in the following expression:

Text.Select([AddressLine1], {"a".."z", "A".."Z", " ", "."})

4. Click OK.
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The preceding expression keeps all the letters, capital letters, the space character, and the 
dot character but drops anything else. The following screenshot shows the results:

Figure 5.45 – The Flat Number and Street Name columns added to the Customer table

Dealing with Date, DateTime, and 
DateTimeZone
Generating date, datetime, and datetimezone values in Power Query is simple.  
We just need to use the three functions.

To generate date values, we can use the following command:

#date(year as number, month as number, day as number)

To generate datetime values, we can use the following command:

#datetime(year as number, month as number, day as number, hour 
as number, minute as number, second as number)
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To generate datetimezone values, we can use the following command:

#datetimezone(year as number, month as number, day as number, 
hour as number, minute as number, second as number, offsetHours 
as number, offsetMinutes as number)

The following code generates a record of the Date, DateTime, and DateTimeZone 
values:

let

    Source = [Date = #date(2020, 8, 9)

            , DateTime = #datetime(2020, 8, 9, 17, 0, 0)

            , DateTimeZone = #datetimezone(2020, 8, 9, 17, 0, 
0, 12, 0)]

in

    Source

The results of the preceding code can be seen in the following screenshot:

Figure 5.46 – Generating Date, DateTime, and DateTimeZone values

In most cases, the issue we're dealing with is not this simple. A common use case is when 
we have Smart Date Keys, and we want to generate the corresponding dates or vice versa. 
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Note
A Smart Date Key is an integer representation of a date value. Using a Smart 
Date Key is very common in data warehousing for saving storage and memory. 
So, the 20200809 integer value represents the 2020/08/09 date value. 
Therefore, if our source data is coming from a data warehouse, we will likely 
have Smart Date Keys in our tables.

In this scenario, we have the date values in the Internet Sales table, and we want to 
get the Smart Date Key of the OrderDate column. We want to add a new column that 
contains the corresponding integer values of the date values in the OrderDate column:

1. In the Internet Sales table, add a new column.

2. Name it OrderDateKey.

3. Use the following expression as our Custom Column Formula:

Int64.From(Date.ToText([OrderDate], "yyyyMMdd"))

4. Click OK.

5. Add Int64.Type as the optional operand of the Table.AddColumn() 
function from the expression bar. 

The following screenshot shows the preceding steps:

Figure 5.47 – Adding OrderDateKey (Smart Date Key) as a new column
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Another scenario that can happen from time to time is when we need to represent the 
Date values in a different time zone. Let's go through this with a scenario. 

The Date values in the OrderDateTime column in the Internet Sales Date 
Time table are stored in New Zealand local date-time. The business requires that we add  
a column to show OrderDateTime in Universal Time Coordinate (UTC).

To achieve this, we need to add a new custom column by using the DateTimeZone.
ToUtc(DateTimeZone as nullable datetimezone) function, which must be 
nested into the Table.AddColumn function, as shown in the following expression:

Table.AddColumn(#"Changed Type", "OrderDateTimeUTC", each 
DateTimeZone.ToUtc(DateTimeZone.From([OrderDateTime])), 
DateTimeZone.Type)

The following screenshot shows the results of adding the new custom column:

Figure 5.48 – OrderDateTimeUTC custom column added

Note the highlighted values in the preceding screenshot. The difference between 
the two columns is 13 hours. When we look closer at the data, we can see that 
OrderDateTimeUTC considered the daylight saving dates of my local machine. While  
I live in New Zealand, my local time difference between UTC time can be either 12 hours 
or 13 hours, depending on the date. If we use the DateTimeZone.ToUtc() function 
while not specifying the time zone, the value converts into the DateTimeZone data type 
and then DateTimeZone.ToUtc() turns the values into UTC.
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What if we have the values of the OrderDateTime column stored in UTC, but the 
business needs to see the data in our local date-time? We can use the DateTimeZone.
ToLocal(dateTimeZone as nullable datetimezone) function for this. So,  
if we need to add a new column to show the UTC values in local time, then it should look 
like the following expression:

Table.AddColumn(#"Added OrderDateTimeUTC", 
"OrderDateTimeLocal", each DateTimeZone.
ToLocal([OrderDateTimeUTC]), type datetimezone)

The results are shown in the following screenshot:

Figure 5.49 – Adding a new custom column to show OrderDateTime values  
in local time from UTC values

Summary
This chapter looked at common data preparation steps, which means we now know how 
data type conversion works and what can go wrong during this. We learned how to split 
a column, merge columns, add a custom column, and filter rows. We also learned how to 
use the Group By functionality in queries to create summarized tables. We also learned 
how to append queries and merge queries. Finally, we dealt with scenarios related to 
Date, DateTime, and DateTimeZone. 

These skills give us firm ground to move on to the next chapter. In the next chapter, we 
will learn to prepare a Star Schema in Power Query Editor.





6
Star Schema 

Preparation in 
Power Query Editor

We learned about some common data preparation steps in the previous chapter, including 
data type conversion, split column, merge columns, adding a custom column, and 
filtering rows. We also learned how to create summary tables using the Group By feature, 
appending data, and merging queries. 

This chapter will use all the topics we discussed in the past few chapters and help you 
learn how to prepare a Star Shema in Power Query Editor. Data modeling in Power BI 
starts with preparing a Star Schema. In this chapter, we'll use the Chapter 6, Sales 
Data.xlsx file, which contains flattened data. This is a common scenario many of us 
have faced; we get a set of files containing data that have been exported from a source 
system, and we need to build a report to answer business questions. Therefore, having the 
required skills to build a Star Schema on top of a flat design comes in handy.



242     Star Schema Preparation in Power Query Editor

In this chapter, we will cover the following topics:

• Identifying dimensions and facts

• Creating Dimensions tables

• Creating fact tables

Identifying dimensions and facts
When we are talking about a Star Schema, we are automatically talking about dimensions 
and facts. In a Star Schema model, we usually keep all the numeric values in fact tables 
and put all the descriptive data in the Dimension tables. But not all numeric values 
fall into fact tables. A typical example is Product Unit Price. If we need to do some 
calculations regarding the Product Unit Price, it is likely a part of our fact table. However, 
if the Product Unit Price is used to filter or group the data, it is probably a part of a 
dimension. 

Designing a data model in a Star Schema is not possible unless we have a level of 
understanding of the data. This chapter aims to look at the Chapter 6, Sales 
Data.xlsx data and create a Star Schema.

As we mentioned earlier, to create a Star Schema, we need to have a closer look at the data 
we are going to model and identify dimensions and facts. In this section, we will try to 
find these dimensions and facts. We will also discuss whether we will wrap the dimensions 
in separate tables or not and why. In the following few sections, we will look at this in 
more detail and implement the identified dimensions and facts.

Before we continue, let's get the data from our sample file into Power Query Editor, as 
shown in the following screenshot. In the past few chapters, we learned how to get the 
data from an Excel file; therefore, so we'll skip explaining the Get Data steps:  
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Figure 6.1 – Power Query Editor connected to the Chapter 6, Sales Data.xlsx sample data

Looking at the Chapter 6, Sales Data.xlsx sample data that we loaded into 
Power Query Editor, we must study the data and find out the following:

• The number of tables in the data source

• The linkages between existing tables

• The lowest required grain of Date and Time

The preceding points are the most straightforward initial points we must raise with 
the business within the initial discovery workshops. These simple points will help us 
understand the scale and complexity of the work. In the following few sections, we'll look 
at the preceding points in more detail.
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Number of tables in the data source
Our sample file contains two sheets that translate into two base tables: Sales and 
Customer. We use the word base tables to extract the dimensions and facts from 
them; therefore, they will not be loaded into the model in their original shape. From a 
modeling perspective, there must be a linkage between the two tables, so we need to raise 
this with the business and study the data and see if we can find the linkage(s). The names 
of the tables are highlighted in the following screenshot:

Figure 6.2 – The Excel sample file contains two sheets that translate into  
two base tables in Power Query Editor

The crucial point is not to be tricked by the number of base tables. These tables can be 
wide and tall, and there may be many more dimension and fact tables once we've prepared 
the Star Schema model data. Our sample only contains two base tables, which then turn 
into five dimensions and one fact table once we've prepared the data for a Star Schema.

The linkages between existing tables
The columns of the two tables are as follows:

• Sales: SalesTerritoryRegion, SalesTerritoryCountry, 
SalesTerritoryGroup, CustomerKey, SalesOrderNumber, 
SalesOrderLineNumber, OrderQuantity, ExtendedAmount, 
TotalProductCost, SalesAmount, TaxAmt, Freight, OrderDate, 
DueDate, ShipDate, Product, ProductCategory, ProductSubcategory, 
Currency
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• Customer:  CustomerKey, Title, FirstName, MiddleName, 
LastName, NameStyle, BirthDate, MaritalStatus, Suffix, 
Gender, EmailAddress, YearlyIncome, TotalChildren, 
NumberChildrenAtHome, EnglishEducation, EnglishOccupation, 
HouseOwnerFlag, NumberCarsOwned, AddressLine1, AddressLine2, 
Phone, DateFirstPurchase, CommuteDistance, City, 
StateProvinceCode, StateProvinceName, CountryRegionCode, 
EnglishCountryRegionName, PostalCode, SalesRegion, 
SalesCountry, SalesContinent

By looking at these columns and studying their data, we can see that the CustomerKey 
column in both tables contains the trivial linkage between them. But there are more. The 
following are some other potential linkages:

• Linkage over geographical data such as Region, Country, Territory Group, 
State/Province, City, Address, and Postal Code

• Linkage over product data such as Product Category, Product 
Subcategory, and Product

• Linkage over sales order data such as Sales Order and Sales Order Line

• Linkage over Date and Time such as Order Date, Due Date, and Ship Date
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Finding the lowest required grain of Date and Time
In most real-world cases, if not all cases, businesses must analyze data over Date or Time 
or both. In our example, the business need to analyze the data over both Date and Time. 
But we have to get more descriptive information about the level of Date and Time that 
the business requires to analyze the data. By studying the data, we find out that both the 
Sales and Customer tables have columns with Date or DateTime data types. The 
Sales table has three columns that contains the DateTime data type. The columns' 
data types are automatically detected by Power Query Editor. Studying the data more 
precisely shows that the time element of the values in both columns is always 12:00:00 
AM. Therefore, the data type of two columns, DueDate and ShipDate, must be Date, 
not DateTime. This means that the only column with the DateTime data type is the 
OrderDate column. The following screenshot shows that the data in the OrderDate 
column is stored in Seconds:

Figure 6.3 – Columns with the Date and DateTime data types in the Sales table

So, the grain of the OrderDate column can be in Seconds. We'll save this question and 
confirm it with the business later. 

Let's also look at the Customer table. The Customer table also has two columns of the 
Date data type, BirthDate and DateFirstPurchase, as shown in the following 
screenshot:
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Figure 6.4 – The Date column in the Customer table

As the next step in our discovery workshops, we must ask the business to determine if 
they need to analyze the customer data surrounding date elements. We have to clarify the 
following with the business: 

• Do they need to analyze the data over customers' BirthDate?

• Do they need to have the BirthDate data at different date levels (Year, 
Quarter, Month, and so on)?

• Do they need to analyze the data over DateFirstPurchase?

• Do they require to show the DateFirstPurchase data at various date levels? 

In our imaginary discovery workshop with the business, we can see that they do not need 
to analyze the customers' birth dates or their first purchase dates. We can also see that they 
need to analyze OrderDate from the Sales table over Date at the Day level and over 
Time at the Minutes level. The data will also be analyzed by DueDate and ShipDate 
from the Sales table, over Date at the Day level.

With that, we will need to create a Date dimension and a Time dimension.

The next step is to identify the dimensions, their granularity, and their facts. 
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Defining dimensions and facts
To identify the dimensions and the facts, we have to conduct requirement gathering 
workshops with the business. We need to understand the business processes by asking 
WWWWWH questions; that is, What, When, Where, Who, Why, and How. This is 
a popular technique also known as 5W-1H. The answers to these questions help us 
understand the business processes, which will help us identify our dimensions and facts. 
Let's have a look at some examples:

• The answer to the What question can be a product, item, service, and so on.

• The answer to the When question can be a date, time, or both and at what level, 
month, day, hour, minute, and so on.

• The answer to the Where question can be a physical location such as a store or 
warehouse, geographical location, and so on.

In the requirement gathering workshops, we try to determine what describes the business 
and how the business measures itself. In our scenario, let's imagine we've conducted 
several discovery workshops with the business, and we found out they require sales data 
for the following:

• Sales amount

• Quantity

• Costs (tax, freight, and so on)

The sales data must be analyzed by the following:

• Geography

• Sales Order

• Product

• Currency

• Customer

• Sales Demographic

• Date at the day level

• Time at the minute level

In the next few sections, we'll determine our dimensions and facts.
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Determining the potential dimensions
To identify the dimensions, we generally look for descriptive data. Based on the results of 
the requirement gathering workshops, we look at our sample files. In both the Sales and 
Customer tables, we can potentially create the following dimensions:

Figure 6.5 – Potential dimensions derived from existing tables

Determining the potential facts
To identify the facts, we must look at the results of the requirement gathering workshops. 
With our current knowledge of the business, we have an idea of our facts. Let's look 
at the data in Power Query Editor and find the columns with the Number data type. 
Nevertheless, not all the columns with the Number data type contain facts. Facts must 
make sense to the business processes that were identified in earlier steps. With that in 
mind, in our exercise, the following list shows the potential facts:

Figure 6.6 – Potential facts derived from existing tables

Note
In real-world scenarios, we conduct discovery workshops with Subject Matter 
Experts (SMEs) to identify the dimensions and facts when possible. But it is 
also a common scenario when the business supplies a set of source files and 
asks us to create analytical reports.
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Now that we have identified potential dimensions and facts, let's go a step further and 
start preparing the Star Schema. We have to take some actions before we can move on to 
the next steps.

As we mentioned earlier, we will not load the Sales and Customer tables into the data 
model in their current flat shape. Therefore, we will unload both tables. We explained 
how to unload tables in Chapter 1, Introduction to Data Modeling in Power BI, in the 
Understanding denormalization section.

The other step we should take is to change the columns' data types. If a Changed Type 
step is automatically added to Applied Steps, then we just need to inspect the detected 
data types and make sure the detected data types are correct. This is shown in the 
following screenshot:

Figure 6.7 – Both the Sales and Customer tables unloaded

When the Type Detection setting is not set to Never detect column types and headers 
for unstructured sources, then Power Query automatically detects column headers and 
generates a Changed Type step for each table. We can configure this setting from Power 
Query Editor (or Power BI) by going to Options and settings -> Options, under Type 
Detection.
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We can also control the auto-detecting data type behavior of Power Query at both the 
Global and Current File levels. The following steps show how to do that:

To configure the auto-detecting data type setting at the Global level, follow these steps:

1. Click the File menu.

2. Click Options and settings.

3. Click Options.

4. Click Data Load.

5. Under Type Detection, you have the option to select one of the following:

• Always detect column types and headers for unstructured sources

• Detect column types and headers for unstructured sources according to each file's 
settings

• Never detect column types and headers for unstructured sources

Figure 6.8 – Changing the Type Detection configuration at the Global level

6. Click Data Load under the Current File section.
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7. Tick/untick the Detect column types and headers for unstructured sources 
option:

Figure 6.9 – Changing the Type Detection configuration at the Current File level

In this section, we identified potential dimensions and facts. In the next section, we will 
look at how to create physical dimensions from the potential ones.

Creating Dimensions tables 
We should already be connected to the Chapter 6, Sales Data.xlsx file from 
Power Query Editor. We need to analyze each dimension from a business perspective  
and create dimensions, if they need to be created. 
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Geography 
Looking at the identified business requirements shows that we have to have a dimension 
that keeps geographical data. When we look at the data, we can see that there are 
geography-related columns in the Sales table. We can create a separate dimension for 
Geography that's derived from the Sales table. However, this might not cover all 
business requirements. 

Let's have another look at the Potential Dimensions table, shown in the following 
figure, which shows some geography-related columns in the Customer table. We need 
to find commonalities in the data to combine the data from both tables into a single 
Geography dimension. Using Column Distribution shows that the CustomerKey 
column is a primary key of the Customer table:

Figure 6.10 – Column Distribution shows that CustomerKey is the primary key for the Customer table

Enabling and using Column Distribution was explained in Chapter 3, Data Preparation 
in Power Query Editor (Figure 29 and Figure 30).
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Let's look at Column Distribution for the SalesContinent, SalesCountry, and 
SalesRegion columns from the Customer table and SalesTerritoryGroup, 
SalesTerritoryCountry, and SalesTerritoryRegion from the Sales table. 
It is clear that the number of distinct values in each column from the Customers tables 
matches the number of distinct values in the corresponding column from the Sales 
table. This is shown in the following screenshot:

Figure 6.11 – Comparing Column Distribution for geography-related columns  
from the Customer table and the Sales table

To ensure the values of the SalesContinent, SalesCountry, and SalesRegion 
columns from the Customer table and the SalesTerritoryGroup, 
SalesTerritoryCountry, and SalesTerritoryRegion columns from the 
Sales table match, let's go through the following test process:

1. Reference the Customer table.

2. Rename the table CustomerGeoTest.

3. Unload the table.

4. Keep the SalesContinent, SalesCountry, and SalesRegion columns by 
Removing Other Columns.

5. Click the table icon at the top left of the Data View pane and click Remove 
Duplicates. The following image shows the preceding steps:
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Figure 6.12 – Steps required to reference the Customer table and remove duplicates

The results of the preceding steps are as follows:

Figure 6.13 – The results of referencing the Customer table and removing duplicates  
from the geography-related columns
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We must then go through the same process to remove the duplicates 
in the SalesTerritoryGroup, SalesTerritoryCountry, and 
SalesTerritoryRegion columns from the Sales table. The following image shows 
the latter results next to the results of removing the duplicates of the SalesContinent, 
SalesCountry, and SalesRegion columns from the Customer table:

Figure 6.14 – Comparing the results of the CustomerGeoTest table and the SalesGeoTest table
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As the preceding image shows, the only difference between the two is the columns' 
sorting order, which is not essential. As a result of the preceding exercise, we do 
not need to create a Geography dimension as the SalesTerritoryGroup, 
SalesTerritoryCountry, and SalesTerritoryRegion columns from the 
Sales table are redundant compared to the SalesContinent, SalesCountry, and 
SalesRegion columns from the Customer table, while the geography-related columns 
in the Customer table provide a higher level of detail.

Sales order
There are only two columns in the Sales table – SalesOrderNumber and 
SalesOrderLineNumber – that contain descriptive data for sales orders. Let's ask  
a question. Why do we need to create a dimension for this? Let's look at the data:

1. Change Column profiling to based on the entire data set.

2. Looking at Column Distribution for both columns shows 
that SalesOrderNumber has 27,659 distinct values and that 
SalesOrderLineNumber has only 8 distinct values:

Figure 6.15 – Looking at the Column Distribution data shows that there  
are a lot of distinct values in SalesOrderNumber

Having many distinct values in SalesOrderNumber by itself decreases the chance 
of creating a new Sales Order dimension being a good idea. So, let's see if we 
can find more evidence to avoid creating the Sales Order dimension. If we 
merge the two columns, we will get a better idea of the number of rows we get in the 
new dimension if we happen to create one.
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3. Select both the SalesOrderNumber and SalesOrderLineNumber columns.

4. Right-click on the title of a column and click Merge Columns.

5. From the Merge Columns window, stick to the defaults and click OK:

Figure 6.16 – Merging the SalesOrderNumber and SalesOrderLineNumber columns

The new Merged column reveals that it contains 60398 distinct and 60398 
unique values, which means the combination of SalesOrderNumber and 
SalesOrderLineNumber is the primary key value of the Sales table, as shown 
in the following screenshot. Therefore, even if we create a separate dimension, we will get 
the same number of rows as our fact table. Moreover, we cannot imagine any linkages to 
any other dimensions. Therefore, it is best to keep those two columns in the Sales table. 
These types of dimensions cannot be moved out of the fact table because of their data 
characteristics. They also do not have any other attributes or a meaningful linkage to any 
other dimensions. These type of dimensions are called Degenerate Dimensions:

Figure 6.17 – Merged Column results
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Now, we must remove the Merged Column steps we just created from our Applied Steps.

Product
The Product dimension is by far the most obvious one that has three descriptive 
columns. We can derive the Product dimension from the Sales table by referencing 
the Sales table. Then, we can remove other columns to keep the Product, 
ProductSubcategory, and ProductCategory columns. As the next step, we 
must remove the duplicates from the Product table. Moreover, we need to generate a 
ProductKey column as the primary key of the Product table. Next, we need to merge 
the Sales table with the Product table to get a ProductKey. We can also rename the 
columns to more user-friendly versions. We will rename ProductSubcategory to 
Product Subcategory and ProductCategory to Product Category. 

Note
Moving forward, we will reference the Sales table many times. Therefore, we'll 
rename the Sales table Sales Base. 

The following steps show how to implement the preceding process in Power Query Editor:

1. Rename the Sales table Sales Base:

Figure 6.18 – Renaming the Sales table Sales Base
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2. Reference the Sales Base table:

Figure 6.19 – Referencing the Sales Base table

3. Rename the referencing table Product.

4. Select the ProductCategory, ProductSubcategory, and Product columns, 
respectively.

Note
Power Query will order the columns by order of our selection in Step 4.

5. Right-click one of the selected columns and click Remove Other Columns:
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Figure 6.20 – Remove Other Columns option

6. Click the table button at the top left of the Data view pane.

7. Click Remove Duplicates:

Figure 6.21 – Removing duplicates from all rows
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So far, we've got distinct values for each row of data in the Product table. Now, we need 
to create a unique identifier for each row:

8. Click the Add Column tab from the ribbon.

9. Click the Index Column dropdown button.

10. Click From 1:

Figure 6.22 – Adding an Index column with an index starting from 1

11. So far, we've created an index column with a default name of Index. We need 
to rename this column ProductKey. We can edit the Power Query expression 
we generated in the Added Index step rather than renaming it as a new Rename 
Column step. 

12. Click the Added Index step from Applied Steps. Then, from the formula bar, 
change Index to ProductKey, as shown in the following screenshot:

Figure 6.23 – Changing the default index column's name
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With that, we've created the Product dimension.

Currency
The Currency column in the Sales Base table holds the currency description for 
each transaction. So, by definition, it is a dimension. Let's raise the Why question here. 
Why do we need to create a separate table for Currency? To answer this question, let's 
analyze the situation in more detail. As shown in the following screenshot, the column 
distribution box, when set to work based on the entire dataset, shows that the Currency 
column's cardinality is low, with only 6 distinct values:

Figure 6.24 – Column distribution for the Currency column over the entire dataset

Since the Columnstore indexing in the xVelocity engine provides better data compression 
and better performance over low cardinality columns, we can expect minimal or no 
sensible performance or storage gains by creating a new dimension table for Currency. 
This is the case in our scenario. We do not gain better performance or save a lot of storage 
or memory by creating a separate Currency dimension. Besides, we do have other 
attributes providing more descriptions for currencies. Last but not least, Currency does 
not have any meaningful linkages to any other dimensions. As a result, we can keep the 
Currency column as a Degenerate Dimension in the fact table.

Customer
We can derive the Customer table from the original Customer table from the source. 
To do this, we'll rename the original Customer table Customer Base. 
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Let's look at the Sales Base table to see how each row is related to the Customer 
Base table. As shown in the following screenshot, the Sales Base table has a 
CustomerKey column. The Column Quality Box of CustomerKey in the Sales 
Base table reveals that there is a customer key for every single sales transaction in the 
Sales Base table (0% Empty). Therefore, every row of the Customer Base table 
describes sales transactions from the customer's viewpoint:

Figure 6.25 – The Column Quality information shows 0% Empty for CustomerKey

Each row keeps descriptive information about a customer. Therefore, having a Customer 
dimension is inevitable. So, let's create the Customer table by following these steps:

1. Reference the Customer Base table:

Figure 6.26 – Referencing the Customer Base table

2. Rename the referencing table Customer.

We need to keep the following columns by removing the other columns; that is, 
CustomerKey, Title, FirstName, MiddleName, LastName, NameStyle, 
BirthDate, MaritalStatus, Suffix, Gender, EmailAddress, 
YearlyIncome, TotalChildren, NumberChildrenAtHome, Education, 
Occupation, HouseOwnerFlag, NumberCarsOwned, AddressLine1, 
AddressLine2, Phone, DateFirstPurchase, and CommuteDistance.

3. The simplest way to do so is to click Choose Columns from the Home tab.
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4. Keep the preceding columns and deselect the rest.

5. Click OK:

Figure 6.27 – Removing the unnecessary columns

With that, we've created the Customer dimension. Since the Customer dimension 
already has a CustomerKey, we do not need to take any more actions. 

As you can see, we removed all geography-related columns from the Customer 
dimension. We will create a separate dimension for them next.

Sales Demographic
We previously looked at creating a Geography dimension, which revealed that the 
geography columns in the Customer Base table could give us more details, which will 
help us create more accurate analytical reports with lower granularity. Now, let's create 
a new dimension to keep Sales Demographic descriptions that are derived from 
Customer Base, as follows:

1. Reference the Customer Base table from Power Query Editor.

2. Rename the new table Sales Demographic.
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3. Click the Choose Columns button from the Home tab.

4. Untick all the columns other than City, StateProvinceCode, 
StateProvinceName, CountryRegionCode, CountryRegionName, 
PostalCode, SalesRegion, SalesCountry, and SalesContinent.

5. Click OK:

Figure 6.28 – Referencing the Customer Base table to create a Sales Demographic table  
and keep the relevant columns
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Looking at the data in the CountryRegionName and SalesCountry columns 
shows that the two columns contain the same data. Therefore, we need to remove 
one of them by double-clicking the Remove Other Columns step and unticking the 
CountryRegionName column. 

The next step is to remove the duplicate rows. This guarantees that the dimension does not 
contain duplicate rows in the future, even if there are currently no duplicate rows.

6. Click the table transformation button at the top left of the Data view pane.

7. Click Remove Duplicates:

Figure 6.29 – Removing duplicates from the Sales Demographic table
Now, we need to add an Index column to create a primary key for the Sales 
Demographic dimension. 
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8. Click the Index Column dropdown button from the Add Column tab.

9. Click From 1:

Figure 6.30 – Adding an Index column to the Sales Demographic table

10. Replace Index with SalesDemographicKey from formula bar.

11. Click the Submit button :

Figure 6.31 – Replacing Index with SalesDemographicKey

So far, we've created all the potential dimensions that can be derived from the Sales 
Base and Customer Base tables. As we discussed earlier in this chapter, we also 
need to create a Date dimension and a Time dimension. We will do so in the following 
sections.
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Date 
As a result of our requirement gathering session with the business, we found that we need 
to have a Date dimension and a Time dimension as the business needs us to analyze the 
Sales data over date and time elements. As we discussed in Chapter 2, Data Analysis 
eXpressions and Data Modeling, the Date dimension can be created using DAX. We also 
discussed the advantages and disadvantages of using the CALENDARAUTO() function in 
DAX. In this section, we'll create a custom function in Power Query Editor to generate a 
simple Date dimension. This custom function will accept two input parameters: Start 
Year and End Year. Then, it will generate a Date table starting from 1st Jan of 
Start Year and ending on 31st Dec of End Year. 

The generated dates in the Date column are continuous and don't have any gaps 
in-between dates. The following steps show how to use the following expression to create 
and invoke the custom function:

1. The custom function can be created by copying the following Power Query 
expression:

// fnGenerateDate

(#''Start Year'' as number, #''End Year'' as number) => 

    let 

        GenerateDates = List.Dates(#date(#''Start Year'',1,1), 
Duration.Days(Duration.From(#date(#''End Year'', 12, 31) - 
#date(#''Start Year'' - 1,12,31))), #duration(1,0,0,0) ),

        #''Converted to Table'' = Table.
TransformColumnTypes(Table.FromList(GenerateDates, Splitter.
SplitByNothing(), {''Date''}), {''Date'', Date.Type}),

        #''Added Custom'' = Table.AddColumn(#''Converted to 
Table'', ''DateKey'', each Int64.From(Text.Combine({Date.
ToText([Date], ''yyyy''), Date.ToText([Date], ''MM''), Date.
ToText([Date], ''dd'')})), Int64.Type),

        #''Year Column Added'' = Table.AddColumn(#''Added 
Custom'', ''Year'', each Date.Year([Date]), Int64.Type),

        #''Quarter Column Added'' = Table.AddColumn(#''Year 
Column Added'', ''Quarter'', each ''Qtr ''&Text.From(Date.
QuarterOfYear([Date])) , Text.Type),

        #''MonthOrder Column Added'' = Table.
AddColumn(#''Quarter Column Added'', ''MonthOrder'', each Date.
ToText([Date], ''MM''), Text.Type),

        #''Short Month Column Added'' = Table.
AddColumn(#''MonthOrder Column Added'', ''Month Short'', each 
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Date.ToText([Date], ''MMM''), Text.Type),

        #''Month Column Added'' = Table.AddColumn(#''Short 
Month Column Added'', ''Month'', each Date.MonthName([Date]), 
Text.Type)

    in

        #''Month Column Added''

Note
The preceding code is also available in this book's GitHub repository, in the 
Chapter 6, Generate Date Dimension.m file, via the following 
URL: https://github.com/PacktPublishing/Expert-
Data-Modeling-with-Power-BI/blob/master/Chapter%20
6%2C%20Generate%20Date%20Dimension.m.

2. In Power Query Editor, click the New Source drop-down button.

3. Click Blank Query:

Figure 6.32 – Adding a Blank Query in Power Query Editor

https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Date%20Dimension.m
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Date%20Dimension.m
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Date%20Dimension.m
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4. Rename the new query from Query1 to fnGenerateDate.

5. Click the Advanced Editor button from the Home tab.

6. Delete the existing code and paste the expressions we copied in the first step.

7. Click Done:

Figure 6.33 – Creating the fnGenerateDate custom function in Power Query Editor

The preceding process creates the fnGenerateDate custom function in Power Query 
Editor. The next step is to invoke the function by entering the Start Year and End 
Year parameters. In real-world scenarios, the date range of the Date dimension is 
dictated by the business. The business says what start date suits the business and what date 
in the future is the best fit for the business. 
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So, we can easily invoke the fnGenerateDate function by passing the Start Date 
and the End Date parameters. But in some other cases, we need to find the minimum 
and maximum dates of all the columns with Date or DateTime data types contributing 
to our data analysis. There are various ways to overcome those cases, such as the following:

• We can get the minimum and maximum dates by eyeballing the data if the dataset  
is small.

• We can sort each of the OrderDate, DueDate, and ShipDate values in 
ascending order to get the minimum dates, and then we can sort those columns  
in descending order to get the maximum dates.

• We can use the List.Min() function for each of the aforementioned columns to 
get the minimum dates. Then, using the List.Max() function for each column 
gives us the maximum dates.

• We can find the minimum and maximum dates using DAX.

• We can use the Column profile feature in Power Query Editor.

Regardless of the method we choose, once we've found our Start Date and End 
Date, which in our sample are 2010 and 2014, respectively, we must invoke the 
fnGenerateDate function, as follows:

1. Select the fnGenerateDate custom function from the Queries pane.

2. Type in 2010 for the Start Year parameter and 2014 for the End Year parameter.

3. Click Invoke:

Figure 6.34 – Invoking the fnGenerateDate function
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Invoking the fnGenerateDate function creates a new table named Invoked 
Function. Rename it Date, as shown in the following screenshot:

Figure 6.35 – Renaming the invoked custom function Date

So far, we've created the Date dimension. Now, let's create the Time dimension.

Time 
As we mentioned previously, in the requirement gathering workshops with the business, 
we found out that both the Date and Time dimensions are required. In the previous 
section, we created a custom function to generate a Date dimension. As we discussed 
in Chapter 2, Data Analysis eXpressions and Data Modeling, the Time dimension can be 
created using DAX. In this section, we'll discuss how to create the Time dimension in 
Power Query. 

The reason we need to create the Time dimension is trivial. We need it so that we can 
analyze our data over different elements of time, such as hour, minute, second, or time 
buckets (or time bands) such as 5 min, 15 min, 30 min, and so on.
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The following Power Query expression creates a Time dimension with 5 min, 15 min,  
30 min, 45 min, and 60 min time bands:

let

Source = Table.FromList({1..86400}, Splitter.SplitByNothing()),

    #''Renamed Columns'' = Table.
RenameColumns(Source,{{''Column1'', ''ID''}}),

    #''Time Column Added'' = Table.AddColumn(#''Renamed 
Columns'', ''Time'', each Time.From(#datetime(1970,1,1,0,0,0) + 
#duration(0,0,0,[ID]))),

    #''Hour Added'' = Table.AddColumn(#''Time Column Added'', 
''Hour'', each Time.Hour([Time])),

    #''Minute Added'' = Table.AddColumn(#''Hour Added'', 
''Minute'', each Time.Minute([Time])),

    #''5 Min Band Added'' = Table.AddColumn(#''Minute Added'', 
''5 Min Band'', each Time.From(#datetime(1970,1,1,0,0,0) + 
#duration(0, 0, Number.RoundDown(Time.Minute([Time])/5) * 5, 
0))  +  #duration(0, 0, 5, 0)),

    #''15 Min Band Added'' = Table.AddColumn(#''5 
Min Band Added'', ''15 Min Band'', each Time.
From(#datetime(1970,1,1,0,0,0) + #duration(0, 0, Number.
RoundDown(Time.Minute([Time])/15) * 15, 0))  +  #duration(0, 0, 
15, 0)),

    #''30 Min Band Added'' = Table.AddColumn(#''15 
Min Band Added'', ''30 Min Band'', each Time.
From(#datetime(1970,1,1,0,0,0) + #duration(0, 0, Number.
RoundDown(Time.Minute([Time])/30) * 30, 0))  +  #duration(0, 0, 
30, 0)),

    #''45 Min Band Added'' = Table.AddColumn(#''30 
Min Band Added'', ''45 Min Band'', each Time.
From(#datetime(1970,1,1,0,0,0) + #duration(0, 0, Number.
RoundDown(Time.Minute([Time])/45) * 45, 0))  +  #duration(0, 0, 
45, 0)),

    #''60 Min Band Added'' = Table.AddColumn(#''45 
Min Band Added'', ''60 Min Band'', each Time.
From(#datetime(1970,1,1,0,0,0) + #duration(0, 0, Number.
RoundDown(Time.Minute([Time])/60) * 60, 0))  +  #duration(0, 0, 
60, 0)),

    #''Removed Other Columns'' = Table.SelectColumns(#''60 Min 
Band Added'',{''Time'', ''Hour'', ''Minute'', ''5 Min Band'', 
''15 Min Band'', ''30 Min Band'', ''45 Min Band'', ''60 Min 
Band''}),
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    #''Changed Type'' = Table.TransformColumnTypes(#''Removed 
Other Columns'',{{''Time'', type time}, {''Hour'', Int64.Type}, 
{''Minute'', Int64.Type}, {''5 Min Band'', type time}, {''15 
Min Band'', type time}, {''30 Min Band'', type time}, {''45 Min 
Band'', type time}, {''60 Min Band'', type time}})

in

#''Changed Type''

Note
The preceding code is also available in this book's GitHub repository, in the 
Chapter 6, Generate Time Dimension.m file, via the following 
URL: https://github.com/PacktPublishing/Expert-
Data-Modeling-with-Power-BI/blob/master/Chapter%20
6%2C%20Generate%20Time%20Dimension.m.

Now that we have the preceding code at hand, we need to create a new Blank Query, 
name it Time, and then copy and paste the preceding expressions into Advanced Editor, 
as shown in the following screenshot:

Figure 6.36 – Creating the Time dimension in Power Query Editor

https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Time%20Dimension.m
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Time%20Dimension.m
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Chapter%206%2C%20Generate%20Time%20Dimension.m
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In this and the previous section, we created the Date and Time dimensions in Power 
Query. You may be wondering how this is different from creating those dimensions in 
DAX, which brings us to the next section.

Creating Date and Time dimensions – Power Query 
versus DAX
In the last two sections, we discussed creating the Date and the Time dimensions in 
Power Query. We also discussed creating both dimensions with DAX in Chapter 2, Data 
Analysis eXpressions and Data Modeling. In this section, we'll discuss the differences 
between these two approaches. 

Generally speaking, once we've load the tables into the data model, both approaches 
would work the same and have similar performance. But there are also some differences 
which may make us pick one approach over the other, as follows:

• We can create the Date and Time dimensions in Power Query, either by creating  
a custom function or a static query. Either way, we can use the query to create Power 
BI Dataflows and make them available across the organization. This is not currently 
possible with DAX.

• The calculated tables that are created in DAX are not accessible within the Power 
Query layer. Therefore, we can't do any equations in Power Query over the Date  
or Time dimensions if necessary.

• If we need to consider local holidays in the Date table, we can connect to the public 
websites over the internet and mash up that data in Power Query. This option is 
NOT available in DAX.

• If we need to consider all the columns with Date or DateTime data types across 
the data model, then using CALENDARAUTO() in DAX is super handy. A similar 
function does not currently exist in Power Query.

• Our knowledge of Power Query and DAX is also an essential factor to consider. 
Some of us are more comfortable with one language than the other.
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Creating fact tables
Now that we've created all the dimensions, it is time to create a fact table that contains 
numeric values and the primary keys of the dimensions as foreign keys. Looking at the 
Sales Base and Customer Base data shows us that the Sales Base table holds 
many transactions with numeric values. Therefore, a fact table can be derived from the 
Sales Base table, which we will call Sales, by following these steps:

1. Reference the Sales Base table and then rename the new table Sales.

We want to get ProductKey from the Product table. To do so, we can merge  
the Sales table with the Product table.

2. Click Merge Queries.

3. Select the ProductCategory, ProductSubcategory, and Product columns, 
respectively.

4. Select the Product table from the dropdown list.

5. Again, select the ProductCategory, ProductSubcategory, and Product 
columns.

6. Select Left outer (all from first, matching from second) from the Join Kind 
dropdown list.

7. Click OK:

Figure 6.37 – Merging the Sales table with the Product table
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8. This creates a new structured column named Product.1 and a new 
transformation step in Applied Steps. The default name for this step is Merged 
Queries. Rename it Merged Sales with Product.

9. Expand the Product.1 column.

10. Tick the ProductKey column (keep the rest unticked).

11. Untick the Use original column name as prefix option. 

12. Click OK:

Figure 6.38 – Expanding the Product.1 structured column
Now, we need to get SalesDemographicKey from the Sales Demographic 
table. The columns that make a unique identifier for each row in the Sales 
Demographic table are SalesCountry, City, StateProvinceName, and 
PostalCode. However, the Sales table does not contain all those columns. 
Besides, the Sales Demographic dimension is derived from the Customer 
Base table. Therefore, we have to merge the Sales table with the Customer 
Base table via the CustomerKey column, and then merge again with the Sales 
Demographic table to reach SalesDemographicKey.

13. Click Merge Queries again.

14. Select the CostomerKey column under the Sales section.

15. Select Customer Base from the dropdown list.

16. Select CustomerKey.

17. Select Left Outer for Join Kind.
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18. Click OK:

Figure 6.39 – Merging the Sales table with Customer Base
This creates a new structured column named Customer Base. It also creates  
a new transformation step in Applied Steps named Merged Queries.

19. Rename this step Merged Sales with Customer Base.

20. Expand the Customer Base structured column.

21. Keep the SalesCountry, City, StateProvinceName, and PostalCode 
columns ticked and untick the rest.

22. Untick the Use original column name as prefix option.
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23. Click OK:

Figure 6.40 – Expanding the Customer Base structured column
Now, we need to merge the results with the Sales Demographic table and get 
our SalesDemographicKey.

24. After clicking Merge Queries again, select the SalesCountry, City, 
StateProvinceName, and PostalCode columns.

25. Select the Sales Demographic table from the dropdown.

26. Select the SalesCountry, City, StateProvinceName, and PostalCode 
columns, respectively. Remember, the sequence is important.

27. Keep Join Kind set to Left Outer.

28. Click OK:
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Figure 6.41 – Merging Sales with Sales Demographic
This creates a new structured column named Sales Demographic. A new 
Merged Queries step is also created in Applied Steps.

29. Rename the Merged Queries step Merged Sales with Sales Demographic.

30. Expand the Sales Demographic structured column.

31. Untick all the columns except for the SalesDemographicKey column.

32. Untick the Use original column name as prefix option.
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33. Click OK:

Figure 6.42 – Merging Sales with Sales Demographic
Now that we've added SalesDemographicKey to the Sales table, it is time to 
look at the columns in the Sales table with either Date or DateTime data types. 
The Sales table has three columns with the DateTime data type. Looking closer 
at the data shows that OrderDate is the only one that is actually in DateTime, 
while the other two represent Date values as the Time part of all values is 
12:00:00 AM. Therefore, it is better to convert the data type into Date. The 
OrderDate column represents both Date and Time. The only remaining part 
is to get the Date and Time values separately so that they can be used in the data 
model relationships. So, we need to split OrderDate into two separate columns: 
Order Date and Order Time. Follow these steps to do so:

34. Select the OrderDate column.

35. Click the Split Column button from the Home tab of the ribbon.

36. Click By Delimiter.

37. Select Space as the delimiter.

38. Click Left-most delimiter for Split at.
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39. Click OK:

Figure 6.43 – Splitting OrderDate by delimiter

40. Rename the Split Column by Delimiter step to Split OrderDate by Delimiter 
from Applied Steps.

41. From the formula bar, change OrderDate.1 to Order Date and change 
OrderDate.2 to Order Time. Then, Submit these changes:

Figure 6.44 – Changing the split column names from the formula bar
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A Changed Type step will be added automatically if the Type Detection setting is 
set to detect the data types. Keep this step. Now, we need to change the data type of 
the DueDate and the ShipDate columns from DateTime to Date.

42. Click the Changed Type step from the Applied Step pane.

43. Select both DueDate and ShipDate.

44. Click the Data Type drop-down button from the Home tab.

45. Select Date:

Figure 6.45 – Changing the DueDate and ShipDate data types
So far, we've added all the key columns from the dimensions to the fact table, which 
will be used to create the relationships between the dimensions and the fact table 
in the data model layer. The only remaining piece of the puzzle is to clean up the 
Sales table by removing all the unnecessary columns.

46. Click the Choose Column button from the Home tab.

47. Keep the following columns ticked and untick the rest; that is, CustomerKey, 
SalesOrderNumber, SalesOrderLineNumber, OrderQuantity, 
ExtendedAmount, TotalProductCost, SalesAmount, TaxAmt, 
Freight, Order Date, Order Time, DueDate, ShipDate, Currency,  
and ProductKey.
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48. Click OK:

Figure 6.46 – Removing unnecessary columns from the Fact table

Looking at the results of the preceding transformation steps, the Sales fact table contains 
the following:

• The OrderQuantity, ExtendedAmount, TotalProductCost, 
SalesAmount, TaxAmt, Freight columns, which are facts.

• CustomerKey, Order Date, Order Time, DueDate, ShipDate, 
ProductKey, and SalesDemographicKey are foreign keys that will be used 
in the data modeling layer to create relationships between the Sales table and its 
dimensions.

• SalesOrderNumber, SalesOrderLineNumber, and Currency are 
degenerated dimensions.
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Summary
In this chapter, we prepared the data in a Star Schema, which has been optimized for data 
analysis and reporting purposes on top of a flat data structure. We identified potential 
dimensions and discussed the reasons for creating or not creating separate dimension 
tables. We then went through the transformation steps to create the justified dimension 
tables. Finally, we added all the dimension key columns to the fact table and removed 
all the unnecessary columns, which gave us a tidy fact table that only contains all the 
necessary columns. 

In the next chapter, we will cover an exciting and rather important topic: Data preparation 
common best practices. By following these best practices, we can avoid a lot of reworks and 
maintenance costs.



7
Data Preparation 

Common Best 
Practices

In the previous chapter, we dealt with a flat data source, and we prepared the data in the 
star schema shape by identifying the dimensions and facts. Then we prepared the data 
to serve the star schema in the data model. In this chapter, we will look at common data 
preparation best practices that will help to achieve better-performing queries that are well 
organized and are cheaper to maintain by going through some general techniques and 
considerations in Power Query to avoid common pitfalls. We will look at query folding 
and discuss some relevant best practices. We will emphasize the importance of data 
conversion to avoid potential issues caused by inappropriate data conversions in the data 
model. We will also discuss some techniques to keep the query sizes optimized. Last but 
not least, we'll discuss some naming conventions that are essential for code consistency.
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In this chapter, we'll discuss the following best practices:

• General data preparation considerations

• Data conversion

• Optimizing query sizes

• Naming conventions

General data preparation considerations
In this section, we'll provide more standard best practices for data preparation in Power 
Query. By following best practices, we are guaranteed to avoid issues down the road that 
are hard to identify and hence expensive to rectify.

Consider loading a proportion of data while connected 
to the OData data source
The Open Data Protocol (OData) was invented initially by Microsoft and is a commonly 
accepted method for creating and consuming REST APIs, and many systems are accessible 
via OData. When loading data via an OData connection into Power BI, it is essential to 
pay extra attention to the amount of data being loaded through the OData connection. 
In many cases, the underlying data model has wide tables with many columns containing 
metadata that is not necessarily needed. 

A general rule of thumb with all kinds of data sources is only to keep relevant columns 
during data preparation. We need to pay even more attention to it when we are dealing 
with OData. I've seen Power BI reports bring production systems to their knees when the 
developer initially tried to load all data from wide tables with more than 200 columns. 
When we say consider loading a proportion of data, we are referring to loading data to 
relevant columns. In some cases, we may also need to filter the data to load the part of it 
that matters the most to the business. 

At this point, we may need to involve the SMEs from the business too. The business sets 
the rules around the relevance of the data it would like to analyze. To be able to get an 
idea of how many tables are involved, and how many columns and rows they have, we can 
quickly experiment before we load the data from the OData data source within the Power 
Query Editor using the custom function that follows:

//fnODataFeedAnalysis

(ODataFeed as text) =>

let   
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Source = OData.Feed(ODataFeed),

        FilterTables = Table.SelectRows(Source, each Type.
Is(Value.Type([Data]), Table.Type) = true),

    #''TableColumnCount Added'' = Table.AddColumn(FilterTables, 
''Table Column Count'', each Table.ColumnCount([Data]), Int64.
Type),

    #''TableCountRows Added'' = Table.
AddColumn(#''TableColumnCount Added'', ''Table Row Count'', 
each Table.RowCount([Data]), Int64.Type),

    #''NumberOfDecimalColumns Added'' = Table.
AddColumn(#''TableCountRows Added'', ''Number of Decimal 
Columns'', each List.Count(Table.ColumnsOfType([Data], 
{Decimal.Type})), Int64.Type),

    #''ListOfDecimalColumns Added'' = Table.
AddColumn(#''NumberOfDecimalColumns Added'', ''List of Decimal 
Columns'', each if [Number of Decimal Columns] = 0 then null 
else Table.ColumnsOfType([Data], {Decimal.Type})),

    #''NumberOfTextColumns Added'' = Table.
AddColumn(#''ListOfDecimalColumns Added'', ''Number of Text 
Columns'', each List.Count(Table.ColumnsOfType([Data], {Text.
Type})), Int64.Type),

    #''ListOfTextColumns Added'' = Table.
AddColumn(#''NumberOfTextColumns Added'', ''List of Text 
Columns'', each if [Number of Text Columns] = 0 then null else 
Table.ColumnsOfType([Data], {Text.Type})),

    #''Sorted Rows'' = Table.Sort(#''ListOfTextColumns 
Added'',{{''Table Column Count'', Order.Descending}, {''Table 
Row Count'', Order.Descending}}),

    #''Removed Other Columns'' = Table.SelectColumns(#''Sorted 
Rows'',{''Name'', ''Table Column Count'', ''Table Row Count'', 
''Number of Decimal Columns'', ''List of Decimal Columns'', 
''Number of Text Columns'', ''List of Text Columns''})

in

    #''Removed Other Columns''
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To invoke the preceding custom function, we need to pass the OData URL to the 
preceding function and it gives us a result set as follows:

Figure 7.1 – Invoked fnODataFeedAnalysis custom function

Note
If you want to test the preceding custom function, you can use the Northwind 
test OData data source here: https://services.odata.org/
Northwind/Northwind.svc/. 

We invoked the fnODataFeedAnalysis custom function with the Microsoft Project 
Online OData URL. The function gets a list of all tables available in the OData data source 
and reveals the following information:

• Name: The names of the tables. As shown in Figure 7.1, the OData data source we 
connected to has 40 tables.

https://services.odata.org/Northwind/Northwind.svc/
https://services.odata.org/Northwind/Northwind.svc/
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• Table Column Count: Shows the number of columns the data source has. This is 
quite handy; we can quickly identify which tables are wide and need more attention. 
As shown in Figure 7.1, the top three tables with the highest number of columns  
are Projects with 131 columns, Tasks with 113 columns, and Assignments with  
84 columns.

• Table Row Count: Shows the number of rows each table has. As illustrated 
in the figure, the TaskBaselineTimephasedDataSet table with 195,727 
rows, the TaskTimephasedDataSet table with 160,154 rows, and the 
AssignmentBaselineTimephasedDataSet table with 75,475 rows are the top three 
tallest tables in the data source.

• Number of Decimal Columns: Shows the count of columns with the Decimal 
datatype.

• List of Decimal Columns: Contains a list of columns with the Decimal datatype. 
We can click in each cell to see the column names.

• Number of Text Columns: Shows the count of columns with the Text datatype.

• List of Text Columns: Contains a list of columns with the Text datatype.

The latter six points are essential. They show the number of columns in the Decimal, 
Text, and DateTimeZone datatypes, which can consume too much memory if we do 
not handle them properly. By looking at the results of the preceding function, we can 
quickly find which tables will need more attention in the data preparation, such as the 
tables that are wide and tall. 

Important notes on using the fnODataFeedAnalysis custom function
If a table in your data source has millions of rows, then the 
#''TableCountRows Added'' step can take a long time to get 
the row count of the table. In that case, you may want to remove the 
#''TableCountRows Added'' step from the preceding query and get 
the rest. 

Some OData feeds result in values of type record. In those cases, we need 
to add some extra transformation steps to fnODataFeedAnalysis. But 
the current version of the function works with most OData feeds without any 
changes.
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After we find the potentially problematic tables, we do the following:

• Eliminate all unnecessary columns.

• Filter the data to reduce the number of rows.

• We may consider changing the granularity of some tables by aggregating numeric 
values.

• The other crucial point is to treat the datatypes properly. We'll discuss it in  
a separate section in this chapter.

Appreciating case sensitivity in Power Query saves you 
from dealing with issues in data modeling
As explained before, Power Query is case sensitive. But case sensitivity is not just about 
the Power Query syntax. It is also essential to pay attention when working with data. In 
many cases, we have GUIDs as key columns (either a primary key or foreign key) when 
we mash up data from different data sources. If we want to compare the GUID values with 
different cases, then we'll get incorrect results. For instance, in Power Query the following 
values are not equal :

C54FF8C6-4E51-E711-80D4-00155D38270C

c54ff8c6-4e51-e711-80d4-00155d38270c

Therefore if we merge two tables joining the key columns, we get weird results. It is also 
the case if we load the data into the data model and create a relationship between two 
tables with key columns in different character cases. To fix this issue, we always keep  
both key columns in the same character case using either the Text.Upper() or  
Text.Lower() function in the Power Query Editor.

Be mindful of query folding and its impact on data 
refresh
Data modelers need to pay extra attention to query folding. Not only can query folding 
affect the performance of a data refresh but it can also hit resource utilization during 
the data refresh. Query folding is essential for the very same reason an incremental data 
refresh is. So if the refresh is taking too long due to the queries not being folded, then 
the incremental data refresh never happens. It is also crucial for the models in either 
DirectQuery or Dual storage mode as each transformation step must be folded. So, now 
that we know query folding is a vital topic, let's take a moment and see what it is all about.
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Understanding query folding
Query folding is simply the Power Query engine's capability to translate the 
transformation steps to the native query language. Therefore, based on the Power Query 
engine's capability, a query in the Power Query Editor may be fully folded or partially 
folded. For instance, we connect to a SQL Server database and take some transformation 
steps. The Power Query engine tries to translate each transformation step to a 
corresponding function available in T-SQL. A query is fully folded when all query steps 
are translatable to T-SQL. If the Power Query engine cannot translate a step to T-SQL, 
then from that step onward the query is not folded anymore, so the query is partially 
folded. 

Here is the point: when the Power Query engine can fully fold a query, it passes the 
generated native query to the source system and gets the results back. On the contrary, 
when a query is partially folded, the Power Query engine sends the part of the query  
that is folded back to the source system, gets the results back, and starts applying the 
unfolded transformation steps on our local machine by the Power Query engine itself. 
If the query is not folded at all, the Power Query engine itself must take care of all 
transformation steps.

DirectQuery and Dual storage modes and query folding
The concept of query folding in programming is referred to as server-side/client-side data 
processing. A fully folded query is processed on the server, which is much more efficient 
when the query is partially or fully processed client-side. 

Therefore, the queries in either DirectQuery or Dual storage modes must be fully folded; 
in other words, they must be translatable to the native query supported by the data 
source system. Hence, when we use a Power Query function that cannot be folded over 
DirectQuery or Dual storage modes, we get the following warning, as also shown in  
Figure 7.2:

Note
This step results in a query that is not supported in DirectQuery mode. Switch 
all tables to Import mode.

Figure 7.2 – Switch all tables to Import mode warning in DirectQuery storage mode
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Data sources and query folding
Most of the data sources that have a query language support query folding, including the 
following:

• Relational databases that are supported in Power BI

• OData feeds

• SharePoint lists, which are basically OData feeds

• Microsoft Exchange

• Active Directory

• Microsoft Access

With that in mind, most file-based data sources, such as flat files, Excel files, blobs, and 
web data sources, do not support query folding.

Indications for query folding
Now that we know what query folding is, it would be good to determine when it happens 
and when it does not. The good news is that there are ways to indicate when a query is 
folded and when it is not. Depending on the storage mode and the transformation steps 
we take, the indication can be noticeable. We might need to take some steps to find out 
whether and when a query is folded. 

As mentioned earlier, if the query's storage mode is DirectQuery or Dual, then the query 
must be fully foldable. Otherwise, we get a warning message to change the storage mode 
to Data Import, which indicates that the query is not foldable. But if the storage mode is 
already Data Import, then each step may or may not be folded. Generally speaking, all 
query steps translated to the data source's native language are foldable. 
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If we map query folding to the SQL language, then if the query and its steps are 
translatable to a simple SELECT statement including SELECT, WHERE, GROUP BY, all 
JOIN types, aliasing (renaming columns), and UNION ALL (on the same source), then 
the query is foldable. With that in mind, we can also check query folding by right-clicking 
on each applied step and seeing whether the View Native Query option is enabled in 
the context menu or not. If View Native Query is enabled, then the step and all previous 
steps are certainly folded. Otherwise, the step we are at (or some previous steps) most 
probably are not foldable. Figure 7.3 shows a query on top of a SQL Server data source that 
is fully folded. We can click View Native Query, which is still enabled, to see the T-SQL 
translation of the current Power Query query: 

Figure 7.3 – View Native Query in the Power Query Editor

Query folding best practices
So far, we've discussed the importance of query folding and how we can determine 
whether a query is fully folded or not, so it is trivial now that the general rule of thumb is 
to always try to make a query fully folded. But there are more best practices around query 
folding. Let's have a look at them.
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Use a SQL statement when connecting to a SQL server
When we connect to a SQL Server data source, we can write T-SQL statements such as 
simple SELECT statements or to execute stored procedures. The following screenshot 
shows the options available within the SQL Server connection:

Figure 7.4 – Using custom T-SQL statements when connecting to a SQL Server data source

This is a handy feature but we are conscious that when we write T-SQL statements, query 
folding is disabled. Therefore, the transformation steps are not folded, as shown in the 
following screenshot: 
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Figure 7.5 – Query folding is disabled for custom T-SQL queries when connecting  
to SQL Server data sources

So, it is best to take care of all transformation steps in our T-SQL statement. In that case, 
we will have only one step in the APPLIED STEPS pane in the query editor. Figure 7.6 
shows the T-SQL version of the query shown in Figure 7.5:

Figure 7.6 – Taking care of transformation steps in T-SQL statements

As a general rule of thumb, we never use SELECT *.
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Push the data preparation to the source system when possible
It is advised to always push all the transformation steps to the source when possible. For 
instance, when we are connecting to a SQL Server data source, it is best to take care of 
all transformation steps on the SQL Server side by creating views, stored procedures, 
or tables that are populated by Extract, Transform, and Load (ETL) tools such as SQL 
Server Integration Services (SSIS) or Azure Data Factory.

Disabled View Native Query does not necessarily mean a transformation 
step is not folded
Investigating the foldability of a query or a transformation step is sometimes confusing. 
As mentioned earlier, an indication of a folded transformation step is to right-click a 
transformation step and see whether the View Native Query option is enabled within the 
context menu. But this is not true when we connect to relational databases. For instance, 
some transformation steps may disable View Native Query from the context menu. 
However, that step is folded back to the database. Figure 7.7 shows a query connected to  
a SQL Server database. We added a simple Keep First Rows step to get the top 10 rows. 

This transformation step disabled View Native Query from the context menu. But,  
we know that T-SQL has a TOP function; therefore, we expect the query to be foldable,  
but as Figure 7.7 shows, View Native Query is disabled: 

Figure 7.7 – View Native Query disabled



General data preparation considerations     299

However, it does not mean that the query is not folded. We can use the Power Query 
Diagnostics tool to see whether the query is folded back to the server or not. In this case, 
we want to diagnose a step. We can right-click on the Keep First Rows step from the 
APPLIED STEPS pane, then click Diagnose as shown in Figure 7.8:

Figure 7.8 – Diagnose step in Power Query Editor

This creates a Diagnostics folder in the Queries pane, including a couple of diagnostic 
queries. As Figure 7.9 shows, I have a Detailed query and an Aggregated query, 
which in our sample is named DimCustomer_Kept First Rows_Aggregated. 
For our sample, the Aggregated query gives us enough information. By clicking the 
DimCustomer_Kept First Rows_Aggregated query, we can see the diagnostic 
data: 

Figure 7.9 – Aggregated diagnostic query
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The diagnostic query provides a lot of information. But we are only interested in the 
Data Source Query column's values, which show the actual T-SQL that Power Query 
sends back to SQL Server. The very last T-SQL query that appears in the Data Source 
Query column is the query we are after. As shown in Figure 7.10, the query indeed starts 
with select top 10, which means the Keep First Rows step is also folded back to 
SQL Server. This is quite important from a data modeling perspective, to ensure we are 
building efficient and performant data preparation within the Power Query layer:

Figure 7.10 – Query folded while View Native Query is disabled

Organizing queries in Query Editor
One of the aspects of a good development model in the software development world is 
to keep our code and objects organized, and Power BI development is not an exception. 
While this best practice is not directly relevant to data modeling as such, from a support 
perspective, it is suggested to keep our queries as organized as possible. Organizing 
queries is simple. Just follow these steps:

1. Select multiple queries from the Queries pane.

2. Right-click then hover over Move to Group, then click New Group...

3. Enter a name for the group.

4. Enter a relevant description for the group.

5. Click OK.

The preceding steps are illustrated in Figure 7.11:
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Figure 7.11 – Grouping queries in the Power Query Editor

After grouping all queries, we have organized the Queries pane. This is handy, especially 
with larger models with many queries, as the following screenshot shows:

Figure 7.12 – Organized queries in the Power Query Editor
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When support specialists look at an organized instance of the Power Query Editor like the 
preceding example, they can quickly understand how the queries relate.

datatype conversion
We previously discussed different Power Query types in Chapter 3, Data Preparation in 
Power Query Editor, in the Introduction to Power Query (M) section. We also discussed, in 
Chapter 5, Common Data Preparation Steps, that datatype conversion is one of the most 
common data preparation steps we take. In both chapters, we looked at different datatypes 
available in Power Query. So as a data modeler, it is crucial to understand the importance 
of datatype conversion. This section looks at some best practices about data conversion 
and how it can affect our data modeling.

Data conversion can affect data modeling
As mentioned, we already discussed the datatypes in Power Query in Chapter 3, Data 
Preparation in Power Query Editor, and Chapter 5, Common Data Preparation Steps. 
However, to emphasize the importance of understanding datatypes in Power Query, it 
is worth recalling it briefly in this section. In Power Query, we have only one numeric 
datatype, which is number. But wait, looking at the Power Query Editor, in the 
Transform tab, there is a Data Type drop-down button showing four numeric datatypes, 
as illustrated in Figure 7.13:

Figure 7.13 – datatype presentations in the Power Query Editor
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In Power Query formula language, there is just one numeric type, which is number. We 
specify it in the Power Query syntax as type number or Number.Type. The datatypes 
shown in the preceding screenshot are indeed not actual datatypes. They are datatype 
presentations or datatype facets. But in the Power Query data mashup engine, they are all 
of type number. Let's look at an example to see what this means. 

The following expression creates a table with different numeric values:

#table({''Value''}

                    , {

                        {100}

                        , {65565}

                        , {-100000}

                        , {-999.9999}

                        , {0.001}

                        , {10000000.0000001}

                        , {999999999999999999.9999999999999999
99}

                    })

The following screenshot shows the results of the preceding expression:

Figure 7.14 – Numeric values in Power Query
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Now we add a new column that shows the datatype of each value. To do so, we can use 
the Value.Type([Value]) function, giving us the type of each value of the Value 
column. The results are shown in the following screenshot:

Figure 7.15 – Getting a column's value types

To see the actual type, we have to click on each cell of the Value Type column, as 
shown in the following screenshot:

Figure 7.16 – Click on a cell to see its type
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While it is not ideal to click on every single cell to be able to see the value's type, there 
is currently no function in Power Query that converts Type to Text. So, to be able 
to show the type as text in the table, we have to use a simple trick. There is a function in 
Power Query that gives a table's metadata. 

The function is Table.Schema(table as table). The output of the function is  
a table revealing informational data about a table, including column Name, TypeName, 
Kind, and so on. What we are after is to show TypeName for each value from the table 
shown in Figure 7.15. So, we only need to turn each value into a table. Luckily, we have  
a function for that in Power Query, the Table.FromValue(value as any) 
function. We then need to get the values of the TypeName column from the output  
of the Table.Schema() function. 

So, let's add a new column to get textual values from TypeName. We name the new 
column Datatypes, and the expression is the following:

Table.AddColumn(#''Value Type Added''

                , ''Datatypes''

                , each Table.Schema(

                             Table.FromValue([Value])

                                   )[TypeName]{0}

                )

The results of the preceding expression are shown in Figure 7.17:

Figure 7.17 – Power Query has only one numeric type, which is Number.Type
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As we can see, from a Power Query perspective, all types of numeric values are of type 
Number.Type and the way we present them in the Power Query Editor is with different 
facets, which does not make any difference in how the Power Query mashup engine treats 
those types. Here is the critical point: what happens after we load the data into the data 
model? Power BI uses the xVelocity in-memory data processing engine to process the 
data. The xVelocity engine uses columnstore indexing technology to compress the data, 
which works based on the cardinality of the column of the tables. 

This brings us to a critical point: although the Power Query engine treats all the numeric 
values as the type number, they get compressed differently depending on their column 
cardinality after loading the values in the Power BI model. Therefore, it is important to set 
a correct type facet for each column. 

The numeric values are one of the most common datatypes used in Power BI; let's 
continue with another example that shows the differences of the four different type 
number facets. Run the following expression in a new blank query in the Power Query 
Editor:

// Decimal Numbers with 6 Decimal

let

    Source = List.Generate(()=> 0.000001, each _ <= 10, each _ 
+ 0.000001 ),

    #''Converted to Table'' = Table.FromList(Source, Splitter.
SplitByNothing(), null, null, ExtraValues.Error),

    #''Renamed Columns'' = Table.RenameColumns(#''Converted to 
Table'',{{''Column1'', ''Source''}}),

    #''Duplicated Source Column as Decimal'' = Table.
DuplicateColumn(#''Renamed Columns'', ''Source'', ''Decimal'', 
Decimal.Type),

    #''Duplicated Source Column as Fixed Decimal'' = Table.
DuplicateColumn(#''Duplicated Source Column as Decimal'', 
''Source'', ''Fixed Decimal'', Currency.Type),

    #''Duplicated Source Column as Percentage'' = Table.
DuplicateColumn(#''Duplicated Source Column as Fixed Decimal'', 
''Source'', ''Percentage'', Percentage.Type)

in

    #''Duplicated Source Column as Percentage''

The preceding expressions create 10 million rows of decimal values between 0 and 10. 
The resulting table has four columns containing the same data. The first column, Source, 
contains the values of type any, which translates to type text. 
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The remaining three columns are duplicated from the Source column with different type 
number facets, as follows:

• Decimal

• Fixed decimal

• Percentage

The following screenshot shows the resulting sample data of our expression in the Power 
Query Editor:

Figure 7.18 – Numeric values with different type number facets

Now click Close & Apply from the Home tab of the Power Query Editor to import 
the data into the data model. At this point, we need to use a third-party community 
tool, DAX Studio, which can be downloaded from the following link: https://
daxstudio.org/downloads/.

After downloading and installing the tool, open it and connect to the current Power BI 
Desktop model, then follow these steps:

1. Click the Advanced tab.

2. Click the View Metrics button.

https://daxstudio.org/downloads/
https://daxstudio.org/downloads/
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3. Click Columns from the VertiPaq Analyzer Metrics section.

4. Look at the Cardinality, Col Size, and % Table columns.

The results of the preceding steps are shown in Figure 7.19:

Figure 7.19 – VertiPaq Analyzer Metrics in DAX Studio

As we see, the Decimal column and Percentage consumed the largest part of the 
table. Their cardinality is also much higher than the Fixed Decimal column. So here it 
is: we would be better to always use the Fixed Decimal datatype (facet) for numeric 
values when possible.

Notes
By default, the Fixed Decimal values translate to the Currency 
datatype in DAX. So, if Currency is not the right format, we just need to 
change the column formatting.

Fixed Decimal, as the name suggests, has a fixed four decimal points. 
Therefore, if the value has more decimal point digits after converting the 
Fixed Decimal, the numbers after the fourth decimal point will be cut off.

That is why the Cardinality column of the VertiPaq Analyzer Metrics in DAX Studio 
shows much lower cardinality for the Fixed Decimal column as the column values only 
keep up to four decimal points, not more. 

So, the lesson to learn is to always take a datatype that makes sense to the business and is 
also efficient in our data model. It is advised that we use the VertiPaq Analyzer Metrics in 
DAX Studio to get a better understanding of the columns' datatypes in our data model. 
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As a data modeler, it is important to understand how the Power Query types and facets 
translate to DAX datatypes. Power Query and DAX are two different expression languages 
with their own datatypes. The following table shows the mapping between Power Query 
types and DAX datatypes:

Figure 7.20 – Power Query to DAX datatype mapping

Include the datatype conversion in a step when 
possible
One of the crucial points many Power BI developers and data modelers miss is that 
some of the most used Power Query functions have an optional operand to force the 
type of output of the function. By missing this point, we need to add at least one extra 
transformation step for datatype conversion, and the more transformation steps, the 
slower the data refresh will be. The following functions have an optional columnType 
operand that we can use to force the output datatype, which could potentially avoid 
adding extra steps for type conversion:

• Table.AddColumn(table as table, newColumnName as text, 
columnGenerator as function, optional columnType as 
nullable type)

• Table.DuplicateColumn(table as table, columnName as text, 
newColumnName as text, optional columnType as nullable 
type)

• Table.AddIndexColumn(table as table, newColumnName as 
text, optional initialValue as nullable number, optional 
increment as nullable number, optional columnType as 
nullable type)
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For instance, in the following screenshot, I added four new columns in four steps. Then,  
I added another step to change the type of the new columns in a single step:

Figure 7.21 – Added new column without adding the column datatypes to each transformation step

I'll pick the DateKey Added step as an example to show how I wrote the expression. The 
DateKey Added expression looks like this:

Table.AddColumn(#''Converted to Table'', ''DateKey'', each 
Int64.From(Text.Combine({Date.ToText([Date], ''yyyy''), Date.
ToText([Date], ''MM''), Date.ToText([Date], ''dd'')})))

The following screenshot shows that the type of the output of the DateKey Added 
expression is type any:

Figure 7.22 – The type of the DateKey column is type any
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As explained earlier, the last operand of the Table.AddColumn() function in Power 
Query is columnType. So I can write the DateKey Added expression like the 
following expression instead:

Table.AddColumn(#''Converted to Table'', ''DateKey'', each 
Int64.From(Text.Combine({Date.ToText([Date], ''yyyy''), Date.
ToText([Date], ''MM''), Date.ToText([Date], ''dd'')})), Int64.
Type)

With the preceding expression, I explicitly mentioned the type of output. Therefore,  
by adding columnType to all other transformation steps, I can omit the Changed  
Type step.

Consider having only one datatype conversion step
It is a common habit a lot of Power BI developers and data modelers have that they 
convert the datatypes several times in a query during the data transformation. It is  
advised to avoid this habit and add only one datatype conversion step in your query  
when possible. The following screenshot shows a query in the Power Query Editor  
before and after consolidating all data conversion steps into one single step, while the 
results are the same:

Figure 7.23 – Consolidating datatype conversion steps into one datatype conversion step
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As you can see in the preceding screenshot, we can omit excessive use of the Changed 
Type step by having only one Changed Type step as the last transformation step.

Optimizing the size of queries
In this section, we'll look at some other data preparation best practices that can make our 
model a better model. Optimizing queries' sizes can reduce the data refresh time. A model 
with an optimized size performs better after we import the data into the data model. In 
the following sub-sections, we'll look at some techniques that help us in having more 
optimized queries.

Removing unnecessary columns and rows
In real-world scenarios, we might deal with large tables with lots of rows and columns. 
Some Power BI developers tend to import all columns and rows from the source, ending 
up having poor-performing reports. Power BI uses the xVelocity engine, which uses 
in-memory data processing for data analytics that works based on column cardinality. 
Therefore fewer columns directly translate to less memory consumption and as a result, 
a more performant data model. In many real-world cases, we need to discuss with the 
business to make sure the columns we will eliminate from the model will not be needed. 

It is also a similar case when it comes to the number of rows. This is another common 
mistake a lot of Power BI developers/modelers make: they do not think about the dataset 
size limitation in the Power BI service. So, they create their reports importing all the 
data from the data source into their Power BI models. The file size gets bigger and bigger. 
Then, at a specific point in time, they get an error when trying to publish the report 
they built. The error complains about exceeding the size limit. As we discussed when 
we discussed the different Power BI licensing models in Chapter 1, Introduction to Data 
Modeling in Power BI, depending on the licensing tier we are at, we get different dataset 
size limitations:

• Free: 1 GB

• Pro: 1 GB

• Power BI Report Server: 2 GB

• Power BI Premium:

• EM1/A1: 3 GB

• EM2/A2: 5 GB

• EM3/A3: 10 GB
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• P1/A4: 25 GB

• P2/A5: 50 GB

• P3/A6: 100 GB

• P4: 200 GB

• P5: 400 GB

In many cases, we might not need to import the full history of data into the Power BI data 
model. So, it is advised to discuss this with the business and try to filter out the number of 
rows. Good data modelers always try to optimize the query size as much as possible. 

Summarization (Group by)
There are many instances when we need to create reports to show summarized data. So 
why do we need to import all the data in its lowest grain into the data model? Well, an 
obvious answer is to support as many business requirements as possible, even the ones 
that might be required in the future. We are Power BI modelers, so we intend to create 
data models and use them to create reports. We can create centralized data models in 
Power BI that can be reused many times by different business departments. But creating 
centralized data models is not an easy task due to the reasons mentioned in the preceding 
section when we discussed the dataset size limits. So, there are many cases in which we 
may need to reduce the size of the data model. 

Summarizing tables is one of the most effective ways of keeping the model size more 
optimized, therefore, we will have more performant data models. We should discuss data 
summarization with the business. Remember, by summarizing the data, we change the 
granularity of the data to a higher level. 

In Power Query, we use the Group by feature to summarize tables. You can study the 
Group by functionality in Chapter 5, Common Data Preparation Steps, under Common 
table manipulations. We will revisit this technique in much more detail when discussing 
aggregations in Chapter 10, Advanced Modeling Techniques. But it was worth mentioning  
it as a data preparation best practice.
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Disabling query load
In many cases, we do not have the luxury of proper ETL and a data warehouse in place, 
and we have to take care of the data transformation in Power Query. In such cases, it is  
a common practice to reference other queries. In many cases, we do not need to have the 
data within the referenced query in the data model. In those cases, the referenced query 
is indeed a transformation hub. Hence, we should consider disabling the query load from 
the Power Query Editor to avoid unnecessary data load. We discussed disabling the query 
load in Chapter 3, Data Preparation in Power Query Editor, in the Query properties section.

Naming conventions
It is essential to have naming conventions for Power BI developers and data modelers. 
It helps with solutions' consistency and makes the code more readable and more 
understandable for the support specialists. It also sets common ground that everyone 
across the organization interacting with our Power BI solutions can benefit from. 

Data sources do not necessarily have the most user-friendly names. So, it is essential to 
follow a predefined naming convention during development, which will help the support 
specialists and contributors create new reports on top of an existing dataset. The following 
naming convention is suggested:

• Use camel case for object names including table names, column names, and 
parameter names.

• Replace underscores, dashes, hyphens, or dots between the words with space.

• Remove prefixes and suffixes from table names (such as DimDate becoming Date 
or FactSales becoming Sales).

• Use the shortest and most self-explanatory names for queries and transformation 
steps.

• Rename the default transformation steps to something more meaningful.

• For custom functions, use the fn prefix in the function name. Do not use any 
spaces in the name but keep the function name camel-cased, for example, 
fnSampleCustomFunction.

• When adding a new column supporting a specific calculation and it is going to be 
hidden from the end user, then use the cal_ prefix in the column name so it can 
quickly be distinguished.
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• Do not use acronyms in the object names unless it makes absolute sense to the 
business. In some businesses (such as aviation), acronyms are widely used and 
well understood by all end users. Therefore, in those cases, we always stick to the 
acronyms.

• Avoid using emojis in object names. We must not use emojis just because we can, 
and we think they look cool. 

• Avoid using numbers in object names. In some cases, developers use a numeric 
value as a prefix for object names to sort. This is strongly against naming convention 
best practices.

You may have a more granular naming convention than the preceding list. However, if you 
do not have one, this can be a good starting point to think about the importance of having 
naming conventions in place.

Summary
In this chapter, we discussed some of the most critical best practices for data preparation. 
We cannot cover all the best practices in a chapter or two, but we tried to cover some 
of the most important ones in this chapter. We learned how to optimize query sizes in 
Power Query and discussed how case sensitivity in Power Query could affect our data 
model. Going ahead, we learned the importance of query folding and how we can identify 
whether a query is folded. We then looked at some datatype conversion best practices and 
how to reduce the number of steps by avoiding unnecessary steps. We then discussed the 
importance of having naming conventions. 

In the next chapter, we will discuss data modeling components and building a star 
schema.





Section 3:  
Data Modeling

Everything you have learned so far comes together in this section, in which we will build  
a well-designed data model in Power BI. The section starts with data modeling 
components from a Power BI point of view. Then the concept of granularity is discussed. 
While in the previous chapters you prepared the building blocks of your data model, it is 
now time to physically build the model with real-world hands-on scenarios. This section 
also explains config tables and walks you through some scenarios in which you need to 
take advantage of the power of config tables. This section ends with naming conventions 
and data modeling best practices.

This section comprises the following chapters:

• Chapter 8, Data Modeling Components 

• Chapter 9, Star Schema and Data Modeling Common Best Practices





8
Data Modeling 

Components
In the previous chapter, we learned about some critical data preparation best practices 
such as loading a proportion of data, removing unnecessary columns, and summarization 
to optimize our data model size. We also learned about query folding and how it can affect 
our data modeling in Power BI. We also looked at data type conversion and discussed 
the importance of selecting certain data types, in order to keep our data model more 
optimized when we import the data into the data model. This brings us to this chapter. 
All our data preparation efforts pay off by having a cleaner data model that is easier to 
maintain and performs well. In this chapter, we'll look more closely at data modeling in 
Power BI by covering the following topics:

• Data modeling in Power BI Desktop

• Understanding tables

• Understanding fields

• Using relationships

In this chapter, we'll work on the Chapter 8, Data Modelling and Star 
Schema.pbix sample file. It is a copy of the sample file that resulted from our work in 
Chapter 6, Star Schema Preparation in Query Editor.
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Data modeling in Power BI Desktop
In Power BI Desktop, the central premise for data modeling is the Model tab in Power 
BI Desktop's main window. However, at the time of writing this book, we cannot take 
any expression-based activities from the Model tab, such as creating a new measure, 
calculated column, or calculated table. The following screenshot shows the Model tab  
in Power BI Desktop:

Figure 8.1 – Model view tab in Power BI Desktop

In the following few sections, we will discuss the modeling features currently available in 
Power BI Desktop. Then, we'll continue to build out the star schema that we prepared in 
Chapter 6, Star Schema Preparation in Query Editor.

Understanding tables 
From a data modeling perspective, tables are objects that contain related data values  
by using columns and rows. In Power BI, each query with Enable load activated  
(within Power Query Editor) presents a table in the data model layer.
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Table properties
By clicking on a table from the Model view in Power BI Desktop, tables properties show 
up in the Properties pane, as shown in the following screenshot:

Figure 8.2 – Table properties pane in the Model view
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Within the Properties pane, we can see the following settings:

• General: Includes the following general table properties:

a.  Name: The name of the table. We can rename a table from here.

b.  Description: We can write some explanations about the table here. These 
explanations then show up in the Data view, as well as in the Report view, as 
shown in the following screenshot:

Figure 8.3 – The table description shows up in the Report view when hovering over a table
We can also use the description for documentation purposes.

c.  Synonyms: Adding synonyms helps explicitly with Power BI's Q&A feature. The 
users usually use a variety of terms to refer to the same thing. For instance, we 
have a table in the model named Sales Demographic. However, users may refer 
to it as geography or geo. So, we can add those phrases to the Synonyms box 
to help Q&A identify the Sales Demographic table if the user uses any of those 
phrases.

d.  Row label: At the time of writing this book, this setting affects the data model in 
two ways, as follows: 

• Q&A: It helps Q&A create more helpful visuals. A Row label defines which column 
best describes a single row of data. For instance, in the Product table, the row label 
is usually the Product (or Product Name) column. Therefore, when the user 
asks Sales by product, Q&A treats Product as a column instead of a table. 
The following screenshot shows the results of asking the sale by product as 
clustered column chart question from Q&A:
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Figure 8.4 – Row label from the table properties helps Q&A provide better results

• Featured table: When we set the table as a featured table in Power BI Desktop, the 
column that was selected as Row label is used in Excel to identify the row quickly. 
More on this in the Is featured table bullet point.

a.  Key column: Provides a unique identifier for each row of the table. Key column 
will then be used in Excel to link a cell's value to a corresponding row in the table.

Note
At the time of writing this book, Key column is part of featured table, which is 
currently in public preview.

b.  Is hidden: By toggling this setting to Yes or No, we can make a table hide or 
unhide.
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c.  Is featured table: With this setting, we can make a table a Featured Table, which 
makes the table's data accessible via Excel. After publishing the data model to 
the Power BI service, only the specified users can access these featured tables. At 
the time of writing this book, the featured tables feature is in public preview, so 
it may look a bit different in the version of Power BI Desktop you're currently 
using. In the meanwhile, let's look at the Is featured table setting. We'll look at 
the Featured Table concept in more detail in the next section. To configure this 
setting, we must toggle it to Yes. To turn this feature off if it is already on, we 
must toggle it to No. To edit the Is featured table setting, we can click the Edit 
hyperlink, which opens the Setup this featured table window. In the following 
screenshot, we set the Product table as a Featured Table by putting a short 
description in the Description text box, selecting the Product column as  
Row label, and selecting the ProductKey column as Key column:

Figure 8.5 – Setting up Featured Table from the Model view

• Advanced: The tables currently have only one advanced setting, which is storage 
mode.

a.  Storage mode: This shows the storage mode of the table. We already discussed 
the available storage modes in Chapter 4, Getting Data from Various Sources, in 
the Storage modes section.
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Featured tables
The concept of featured tables comes from the reusability mindset where we take the 
prepared and already polished data across the organization in a secure way. The Power 
BI admins then have granular control of configuring or monitoring the featured table, 
as well as who can publish or update the featured tables or who, within the organization, 
can access the featured tables. We explained how to set the table as a featured table in the 
previous section. After setting the table as a featured table from the Model view, the data 
(including measures held by a table) will be available the Data Types Gallery in Excel 
after publishing the model to a modern Workspace in the Power BI service. 

The following screenshot shows a new Excel file when the user types in a product name, 
and then selects that Product from Data Types Gallery from the Data tab in Excel:

Figure 8.6 – Getting Product data in Excel from the Product table

There are many benefits of setting a table. Accessing and using featured tables in Excel is 
outside the scope of this book. You can learn more about using featured tables in Excel via 
the following link:

https://docs.microsoft.com/en-us/power-bi/collaborate-share/
service-excel-featured-tables?WT.mc_id=5003466.

https://docs.microsoft.com/en-us/power-bi/collaborate-share/service-excel-featured-tables?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/collaborate-share/service-excel-featured-tables?WT.mc_id=5003466
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Calculated tables
In Power BI Desktop, we can create new tables using DAX expressions. Calculated tables 
are physical tables that are generated as a result of using table functions or constructors 
in DAX. Unlike Virtual Tables, which we already discussed in Chapter 2, Data Analysis 
eXpressions and Data Modeling, in the Understanding virtual tables section, calculated 
tables are much easier to work with as they are visually visible within the Model view in 
Power BI Desktop. 

The following table shows the most common table functions in DAX that can be used to 
create a calculated table:

Figure 8.7 – Most common table functions in DAX

We can create calculated tables in many scenarios, especially when the business needs 
to reuse the data contained in a calculated table in the future. Calculated tables become 
handy in many scenarios, such as creating summary tables based on the existing measures 
or creating Date or Time tables (when they do not exist in the data source). The data 
that's held in calculated tables is already available in the data model, so refreshing the 
calculated tables doesn't take much time.

Data refresh is not even available from the context menu when we right-click on a 
calculated table. The data is automatically populated when we refresh the underlying 
source tables. However, calculated tables, just like any other physical tables, consume 
some storage space. Hence, after creating calculated tables, the data model's size in Power 
BI Desktop increases. Consequently, when we publish the model to the Power BI service, 
the dataset's size increases.
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Creating a new calculated table is not currently available via the Model view in Power BI 
Desktop. However, we can find the Table tools tab from the ribbon in the Data view of 
Power BI Desktop, as shown in the following screenshot:

Figure 8.8 – Creating a new calculated table from the Data view in Power BI Desktop

We can also create a new calculated table from the Modeling tab of the Report view,  
as shown in the following screenshot:

Figure 8.9 – Creating a new calculated table from the Report view in Power BI Desktop
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Let's look at the Chapter 8, Data Modelling and Star Schema.pbix sample 
file. The data model looks as follows:

Figure 8.10 – Sample Sales data model

With the preceding data model, we can analyze sales for many different business entities, 
such as analyzing Sales by Product, by Customer, by Sales Demographics, by 
Date, and by Time. Now, the business has a new requirement: getting the number of 
products sold to all customers with a yearly income greater than $100,000 at the year-
month level. We can show these requirements in the data visualization layer. Still, the 
business would like to have the data as a summary table in order to analyze the data at 
higher levels, and then reuse the data in different data visualizations in the future. The 
important points to note in this scenario are as follows:

• The business is only after the products sold. Therefore, for each product from the 
Product table, there must be a Sales Amount within the Sales table.

• From the sold products, the business is only interested in the ones that the 
customers with a yearly income greater than $100,000 had bought.
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• The results must be at the year-month level.

• The business requires the results as summary data so that they can analyze the data 
at a higher granularity.

We can use the following DAX expression to cater to that:

Sales for Customers with Yearly Income Greater Than $100,000 = 

ADDCOLUMNS(

    SUMMARIZE(

        FILTER(

            SUMMARIZE(

                Sales

                , 'Product'[ProductKey]

                , 'Date'[Year-Month]

                , 'Customer'[CustomerKey]

                , 'Customer'[YearlyIncome]

                )

            , 'Customer'[YearlyIncome] >= 100000

        )

    , 'Product'[ProductKey]

    , 'Date'[Year-Month]

    , 'Customer'[CustomerKey]

    )

, "Sales"

, [Sales Amount]

)
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The following screenshot shows the results:

Figure 8.11 – Calculated table showing sold products to customers with  
yearly income greater than $100,000

As the preceding screenshot shows, the calculated table has four columns: ProductKey, 
Year-month, CustomerKey, and Sales. 

When we create a calculated table derived from other tables in the data model, we might 
get a circular dependency error if we were not careful about the functions we used to 
create the calculated table. In that case, we cannot create any relationships between the 
calculated table and any tables it is derived from, unless we change our choice of functions 
in the DAX expressions.
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Note
It is advised not to use calculated tables for any data transformation activities. 
We always tend to move the data transformation logics to the source system 
when possible. Otherwise, we take care of the transformation in the Power 
Query layer.

Now, we can create the relationships between the new calculated table, the Product 
table, and the Customer table, as shown in the following screenshot:

Figure 8.12 – Creating relationships between the calculated table and the dimension tables

The business can now analyze the sales data based on the attributes of both the Product 
and Customer tables, but only for the customers with an annual income greater than 
$100,000. This exercise can be an exciting analysis if you wish to target a specific group of 
customers and understand what products they spend their money on.
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Understanding fields
Fields in Power BI include columns and measures. When we talk about fields, we are 
generally talking about something that applies to both columns and measures. For 
instance, when we talk about fields' data types, we refer to the correct data types for both 
columns and measures. The Fields term is used within Power BI Desktop in different 
views, so there is a Fields pane in the Report view, the Data view, and the Model view.

Data types
When we import data into the model, the model converts that data, in columns, into one 
of the Tabular Model data types. When we then use the model data in our calculations, 
the data is converted into a DAX data type for the duration of running the calculation. 
The model data types are different from Power Query data types. For instance, in Power 
Query, we have DateTimeZone. However, the DateTimeZone data type does not 
exist in the data model, so it converts into DateTime when it loads into the model. The 
following table shows the different data types supported in the model, as well as DAX:

Figure 8.13 – Data types in DAX
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In Power BI Desktop, the model data types are visible under the Column tools tab from 
the Data view or the Report view. The following screenshot shows the data types from the 
Column tools tab within the Data view:

Figure 8.14 – Data types in Power BI Desktop
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Notes
While the Binary data type is available in the Data types dropdown, Power 
BI does not support it in the data model. Hence, if we try to convert a column's 
data type into binary, we get an error message. 

Power BI Desktop eliminates binary columns by default. Therefore, we should 
remove them in Power Query Editor.

Power Query supports the Binary type; therefore, it is best to convert the 
binary values into one of the supported tabular model data types.

We can implicitly define the data types for columns only. A measure's 
data types are automatically determined by the functions we use in DAX 
expressions.

When we use table functions in DAX, the result is a Table data type. We use 
this data type to create either virtual tables or calculated tables.

While Power Query supports the DateTimeZone type, it converts into 
DateTime without adjusting the zone when it loads into the data model. 
Therefore, we must take care of the zone adjustments in Power Query Editor 
before loading the data.

Power Query supports the Duration type, but when the data loads into the 
model, the duration values are converted into Decimal values.

We can Add and Subtract numeric values to/from DateTime values 
without raising any errors; for instance, DATE(2010, 1, 1) + 
0.04167 = 1/01/2010 1:00:00 AM.

Custom formatting
Formatting is the way we garnish values. We only format values to make them more 
user-friendly and readable. Changing the value's formatting does not change its data 
type. Hence, it does not affect memory consumption, nor performance. Some data types 
support custom formatting. The following table shows custom formatting for various 
supporting data types:
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Figure 8.15 – Custom formatting options

Columns
In Power BI, tables are created by a set of columns. These columns are either physical 
columns that come directly from the data source or are made by the developer or Power 
BI Desktop itself. In this section, we will look more closely at the different types of 
columns and column properties within the Model view in Power BI Desktop.

Calculated columns
Calculated columns are the columns that do not live in the data source. We can create  
a calculated column in the data model using DAX expressions.

Power BI uses the xVelocity engine, which is Microsoft's proprietary in-memory data 
processing engine. The xVelocity engine uses ColumnStore indexing technology, which 
highly compresses the column's data based on the data's cardinality within that column. 
When we refresh a table's data, the engine compresses all columns' data and loads it into 
memory at once. This process applies to the physical columns that already exist in tables. 



336     Data Modeling Components

Power BI computes the calculated columns after loading the table (which the calculated 
columns belong to) into the model. When we refresh a table, the new data loads into 
the model, so the calculated columns' values are no longer valid. Therefore, the engine 
must recompute all the calculated columns. Moreover, the engine sequentially computes 
the calculated columns in a table. Thus, the calculated columns are not optimized and 
compressed as well as the physical columns are. 

Grouping and binning columns
In Power BI Desktop, we can create a grouping column on top of any columns. However, 
we can only create binning columns for the columns with numeric data types. Grouping 
and binning are two ways to group the values of a column manually. Grouping and 
binning come in handy when we need to group our data.

The grouping and binning features are not currently available in the Model view, so to 
create a new grouping or binning column, we need to switch to either the Report view or 
the Data view. Then, we must right-click on the desired column and select the New group 
option from the context menu. For instance, if we look at the Product table from our 
sample file, we can see, under the ProductCategory column, that the categories are 
Accessories, Bikes, and Clothing. Now, the business only needs to analyze their 
sales over two categories; that is, Bikes and Other. There are many ways to answer this 
query, such as by creating a new column within Power Query Editor. However, we want to 
look at the grouping feature by going through the following steps:

1. Click the Data view tab.

2. Right-click the ProductCategory column.

3. Click New group.

4. Enter Bike Category for Name.

5. Click Bikes from the Ungrouped values list.

6. Click the Group button.

7. Tick the Include Other group option.

8. Click OK.
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The following screenshot illustrates the preceding steps:

Figure 8.16 – Creating a new Data Group
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The preceding steps create a new Data Group column, as shown in the following 
screenshot:

Figure 8.17 – A new Data Group has been created

We can use this new Data Group in our data visualizations just like any other columns.

Just like how we created a Data Group using the grouping, we can use the binning option 
for numeric columns. 

An excellent example of binning the data in our sample is when the business must 
group the SalesAmount values from the Sales table when the bin (group) size for 
SalesAmount is $1,000.

The following steps show how to bin the values of SalesAmount:

1. Right-click the SalesAmount column from the Sales table.

2. Type in Sales Amount Bins for Name.

3. Stick to Bin via the Group type dropdown.

4. Make sure Bin Type is set to Size of bins.

5. Enter 1000 for Bin size.

6. Click OK:
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Figure 8.18 – Creating Data Groups by binning the data

The preceding steps create a new numeric Data Group column with no summarization. 
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The following screenshot shows a simple visualization showing how grouping and binning 
can help us create storytelling visuals:

Figure 8.19 – Using Data Groups for data visualization

In the preceding screenshot, the user was interested in seeing sales analysis for all sales 
items smaller than $1,000. She clicked on the 0 bin from the right doughnut chart. Here is 
how this simple activity reveals interesting information about our sales:

• In the right doughnut chart, we can see that 12.09% of our total sales are from items 
cheaper than $1,000.

• The left doughnut chart shows that from that 12.09% of total sales, 70.67% comes 
from selling bikes, while 29.33% comes from other categories.

• The column chart at the bottom of the report also reveals some exciting 
information. For example, we have Road Bikes, Mountain Bikes, and Touring 
Bikes that are cheaper than $1,000. From the under $1,000 items (12.09% of our 
total sales), our buyers bought under $1,000 worth of road bikes, which is 40.15% 
of our under $1,000 deals.
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Column properties
The column properties are available within the Model view. We can see and change 
column properties by clicking on a column in the Model view via the Properties 
pane. Depending on the data type of the selected column, we will see slightly different 
properties in the properties pane. For instance, the following screenshot shows the 
column properties of the Date column from the Date table:

Figure 8.20 – Column properties in the Model view
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We can change a column's properties in bulk by pressing the Ctrl key on our keyboard and 
then clicking the columns via the Properties pane. Then, we can change the properties of 
the selected columns in bulk from the Properties pane. 

The column properties include the following:

• General: This includes generic column properties, such as the following:

a.  Name: Contains the name of the column. We can rename a column by changing 
the value of its Name property.

b.  Description: Here, we can write a brief description of the column. The 
description of a column shows up when we hover over the column from the 
Fields pane in Power BI Desktop, as well as in the Power BI service when the 
report is in Edit mode.

c.  Synonyms: We can enter some synonyms to help Q&A show more relevant 
information.

d.  Display folder: The display folder is also available for measures. We can organize 
our model by grouping relevant fields into display folders. 

We can group all the key columns in a folder by following these steps:

1. Search for key in the search box in the Model view.

2. Select multiple columns by pressing the Ctrl key on your keyboard and clicking each 
column.

3. Enter Key Columns in the Display folder box of the Properties pane.
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The following screenshot illustrates the preceding steps:

Figure 8.21 – Grouping columns with the Display folder option
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The preceding steps result in creating a Key Columns display folder in each table. The 
following screenshot shows the new display folder:

Figure 8.22 – Display folders created in tables

We can also create nested folders by following the Parent Folder\Child Folder pattern. 
The following screenshot shows an example of creating nested display folders:
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Figure 8.23 – Creating nested display folders

Here are some properties of Fields:

• Is hidden: We can hide a field by toggling this property to Yes or No.

• Formatting: This includes properties related to formatting a column. The 
formatting section varied based on the data type of the selected column, as follows: 

a.  Data type: We can change the data type of the selected columns by selecting  
a desired data type from the dropdown list.

b.  Format: The format varies based on the data type, so we can pick a format that 
best suits our use case. We looked at custom formatting in detail in this chapter  
in the Custom formatting section.

• Advanced: This includes more advanced column properties, as follows:

a.  Sort by column: We can set this property to sort a column by another column; 
for example, we can sort the Month column by the MonthOrder column from 
the Date table.

b.  Data category: We can state the data category for the selected column by 
setting this property. This property tells Power BI how to treat the values in data 
visualization. For instance, we can set this property to City for the City column 
from the Sales Demographic table.
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c.  Summarize by: This shows how we want to implicitly aggregate a column when 
we use it in our visuals. For instance, we might want to aggregate ProductKey 
to COUNT or ProductKeys. We can do this in DAX, but this is another way to 
do so. We can set this property to COUNT for the ProductKey column from the 
Product table. When we use it in our visuals, it automatically shows the count of 
ProductKeys. The following screenshot shows the card visual that we directly 
used for our ProductKey after setting its Summarize by property to COUNT:

Figure 8.24 – Count of the ProductKey column by setting its Summarize by property

• Is nullable: We can set this property for the columns that are not supposed to have 
any null values, such as our primary keys. However, bear in mind that if we toggle 
this property to No, then if, in the future, there is a null value in the column, we get 
an error message while refreshing the data.

Hierarchies
Hierarchies are abstract objects in our model that show how different columns relate to 
each other from a hierarchical viewpoint. We can create hierarchies in the data model 
from the Report view, from the Data view, or the Model view. To create a Calendar 
hierarchy in the Date table from the Model view, follow these steps:

1. Right-click the Year column.

2. Select the Create hierarchy option from the context menu.

3. From the Properties pane, change the Name value of the hierarchy to Calendar 
Hierarchy.

4. From the Hierarchy section, select the Month and Date columns from the 
dropdown list.

5. Click the Apply Level Changes button.
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The following figure shows the preceding steps:

Figure 8.25 – Creating a hierarchy from the Model view

As shown in the preceding image, some other properties are available for a hierarchy that 
are very similar to column hierarchies, so we will skip explaining them again.

Measures
In data modeling, measures are calculations we create to help us with our data analysis. 
The results of these equations of measure always change when we interact with the 
measures. This interaction with the measures can happen from the data visualization layer, 
when we use the measures in visuals, or within the data model, when we use the measure 
to create other tabular objects such as calculated tables. We can create measures either 
from the Report view or from the Data view. Once we've created these measures, we can 
set measures properties from the Model view. The properties for these measures are very 
similar to the column properties, so we will skip explaining them again. In Power BI, there 
are two types of measures: implicit measures and explicit measures. Let's look at them in 
more detail. 
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Implicit measures
Implicit measures are abstract measures that are created when we use a column in a visual. 
Power BI automatically detects these implicit measures based on the column's data type 
when it is a numeric data type. We can quickly recognize these implicit measures by their 
( ) icon from the Fields pane. If we set the Summarize by property of a numeric column 
(implicit measure), then we can use that column in a visual. This visual, by default, uses 
the selected aggregation within the Summarize by property. This means that if we set 
the Summarize by property of a column to COUNT when we use the column in a visual, 
the visual automatically uses the count of that column as a measure. In other words, 
implicit measures are the measures that we never create using DAX expressions. They are 
generated when we use them directly in our visuals. The following screenshot shows the 
Year column being detected as an implicit measure. Therefore, when we use it on a table 
visual, the table automatically calculates the SUM value of Year, which is incorrect:

Figure 8.26 – The Year column from the Date table detected as an implicit measure

While using implicit measures is very easy, we do not recommend using this feature. 
There are many reasons to avoid using implicit measures, some of which are as follows:

• In many cases, the columns that are detected as implicit measures do not contain 
additive values; therefore, a summation of those values is incorrect, such as in the 
Year example that we looked at previously.

• Implicit measures are not reusable. They are created in the visualization layer and 
can only be used on the visuals.
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• We do not have any control over the underlying expressions the visuals create.

• They are confusing and expensive to maintain.

• They are not compatible with some advanced data modeling techniques such as 
Calculation Groups.

There are two ways we can disable implicit measures. The first method is to set the 
Summarize by property of the columns to Don't summarize. We can quickly set this via 
the Model view by performing the following steps:

1. Click on a table either from the Fields pane or the Model view.

2. Press Ctrl + A on your keyboard.

3. Right-click on a table.

4. Click the Select columns option from the context menu.

5. Expand the Advanced section of the Properties pane.

6. Select None from the dropdown list for the Summarize by property.

The following screenshot illustrates the preceding steps:

Figure 8.27 – Setting the Summarized by property to Don't summarize for all columns across the model
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The second method is to disable the implicit measures using Tabular Editor across 
the entire model. This method prevents the model from detecting implicit measures; 
therefore, if we add more tables to our data model in the future, the model will not detect 
any more implicit measures. Tabular Editor is an external tool that's widely used by the 
community. At the time of writing this book, this option is not available directly via Power 
BI Desktop. The following steps explain how to disable implicit measures from the Tabular 
Editor:

1. In Power BI Desktop, click the External Tools tab from the ribbon.

2. If you installed the latest version of Tabular Editor, it will appear in External Tool. 
Click Tabular Editor.

3. In Tabular Editor, click Model.

4. Set the values of the Discourage Implicit Measures option to True.

5. Save the changes you made to the model:

Figure 8.28 – Discouraging implicit measures for the entire model in Tabular Editor

Now that we've saved the changes back to Power BI Desktop, close Tabular Editor, then 
refresh the model in Power BI Desktop to apply the changes properly.
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Explicit measures
Explicit measures are the measures we create using DAX functions. There are endless 
use cases for measures. We can create measures to answer easy summation, to complex 
time intelligence and running total questions. We can create textual measures to make 
visual titles more dynamic. We can also create measures that will be used in conditional 
formatting to make the formatting more dynamic.

Textual measures
The concept of textual measures is helpful for solving many data visualization scenarios. 
Here is a common scenario: the business needs to visualize the sales amount by product in 
a column chart. The color of the columns within the chart must change to red if the sales 
amount for that particular data point is below the overall average sales for products.

To solve this challenge, we need to create a textual measure such as the following:

Sales by Product Column Chart Colour = 

    var avgSales = AVERAGEX(

                    ALL('Product'[Product])

                    , [Sales Amount]

                )

    return

    IF([Sales Amount] < avgSales, "Red")

Now, we must put a column chart on a report page and follow these steps:

1. Put the Product column from the Product table on Axis.

2. Put the Sales Amount measure on Values.

3. Click the Format tab from the Visualizations pane.

4. Expand the Data colors dropdown.

5. Click the fx button.

6. Select Field value from the Format by dropdown.

7. Select the Sales by Product Column Chart Color measure.

8. Click OK.
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The following figure illustrates the preceding steps:

Figure 8.29 – Using a textual measure to set the colors in a column chart dynamically

The following screenshot shows the results:

Figure 8.30 – Conditionally formatted column chart using textual measures
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Using relationships
A relationship, when modeling relational data, describes the connection between two 
tables. For instance, there is a relationship between the Customer table and the Sales 
table in our example. A customer can have multiple sales transactions in the Sales 
table. To create a relationship between the Customer and Sales tables, we must link 
CustomerKey from the Customer table to CustomerKey from the Sales table. This 
linkage enables Power BI to understand that each row of data in the Customer table can 
have one or more related rows in the Sales table. 

To create relationships between tables in Power BI Desktop, we can either use the 
Model view to drag a column from a table and drop it to the relevant column from the 
other table, or we click the Manage relationships button from the ribbon. The Manage 
relationships button appears in several places in the ribbon. The following screenshot 
shows the Manage relationship window:

Figure 8.31 – Manage relationships window in Power BI Desktop
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When we create a relationship between two tables, we can visually see the relationship 
in the Model view, so the two tables are linked by either a solid line or a dotted line. A 
solid line represents an active relationship, while a dotted line represents an inactive 
relationship. The following screenshot shows how the Date and Sales tables relate to 
each other:

Figure 8.32 – Active and inactive relationships

Depending on the relationship cardinality, the relationship line starts or ends either with 
an asterisk (*) or a one (1). There is also an arrow on every relationship, which shows the 
direction of filter propagation.  

In the next few sections, we'll discuss relationship cardinalities and filter propagation in 
more detail.

Primary keys/foreign keys 
In relational data modeling, the tables may have a column (or a combination of columns) 
to guarantee the uniqueness of each row of data within that table. If each row in a table 
is not unique, then we have duplicate rows that we must take from them, either in the 
source systems or in Power Query Editor. The column that guarantees the uniqueness of 
each row within a table is the primary key of that table. The primary key of a table cannot 
contain blank values. When the primary key of a table appears in a second table, it is, by 
definition, called a foreign key, but only if the data types of both columns are the same. 
Power BI Desktop currently does not force the same data type requirement. Therefore, we 
need to be extra careful while creating relationships between two tables.
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Handling composite keys
As we mentioned earlier, there might be a combination of columns that guarantee the 
uniqueness of each row. So, the primary key in such a table would be a composite key 
containing all the columns that make a row unique. In many relational database systems, 
including SQL Server, we can create multiple relationships between the two tables by 
connecting all the columns that contribute to the composite key. This is not legitimate in 
Power BI Desktop and all other Microsoft products, using the Tabular model engine. 

To fix this issue, we need to concatenate all the columns and create a new column that 
guarantees each row's uniqueness. We can either use Power Query Editor to create this 
new column or use DAX by creating a calculated column, but the Power Query method 
is preferred. We learned how to do this in Chapter 6, Star Schema Preparation in Power 
Query Editor, in the Creating dimensions and Creating facts sections. To remind you what 
we did and how it is relevant to handling composite keys, we'll quickly repeat the process 
here:

1. We created the Product dimension while keeping the descriptive values that 
describe a product derived from the Sales Base query.

2. We removed duplicate rows.

3. We identified the key columns that make each row of the Product table unique; 
that is, ProductCategory, ProductSubcategory, and Product.

4. We added an Index Column starting from 1. This is where we handled the 
composite key. If we didn't add the index column, we had to figure out how to deal 
with the composite key later. Just to remind you again, the composite key in this 
scenario is a combination of the ProductCategory, ProductSubcategory, 
and Product columns; the new ProductKey column is the primary key of the 
Product table.

5. When we created the fact table later, we used the ProductCategory, 
ProductSubcategory, and Product columns from the Product table to 
merge the Product table into the Sales table. Then, we expanded the Product 
structured column from the Sales table by importing the ProductKey 
column from the Product table. ProductKey in the Sales table is now the 
foreign key.

So, the value of taking the proper steps in the data preparation layer is, again, vital. Since 
we've already prepared the data to support a proper star schema in the data model, we do 
not need to deal with composite keys.
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As we mentioned earlier, this is the Power Query method, but here is an example of how 
to deal with composite keys in the Model view. There is a good example of composite keys 
in the Adventure Works DW (with Exchange Rates).pbix sample file. This 
file can be accessed on GitHub via the following link:

https://github.com/PacktPublishing/Expert-Data-Modeling-
with-Power-BI/blob/master/Adventure%20Works%20DW%20(with%20
Exchange%20Rates).pbix.

Here is a scenario: the Internet Sales table contains the Sales Amount in different 
currencies. The business would like to have Internet Sales in USD. 

In the sample file, there is an Exchange Rates table with no relationship to any other 
tables. 

The following screenshot shows the Internet Sales layout of the underlying data 
model of the sample file:

Figure 8.33 – Internet Sales layout in the Model view

https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW%20(with%20Exchange%20Rates).pbix
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW%20(with%20Exchange%20Rates).pbix
https://github.com/PacktPublishing/Expert-Data-Modeling-with-Power-BI/blob/master/Adventure%20Works%20DW%20(with%20Exchange%20Rates).pbix
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We solved the same problem in Chapter 2, Data Analysis eXpressions and Data Modeling, 
in the Relationships in virtual tables section. Here, we want to solve the problem by 
creating a relationship between the Exchange Rates table and the Internet Sales 
table.

If we look at the data in the Exchange Rates table, we can see that CurrencyKey 
is not the primary key of the table as it contains lots of duplicate values. The following 
screenshot shows that the Exchange Rates table has 14,264 rows, while the 
CurrencyKey column only has 14 distinct values:

Figure 8.34 – The CurrencyKey column is not the primary key for the Exchange Rates table

The Date column is also not the primary key in the Exchange Rates table. But a 
combination of both columns gives us a higher cardinality in the data. Concatenating 
CurrencyKey and Date creates a primary key for the Exchange Rates table. So, we 
can use the following DAX expression to create a new calculated column called ExchKey 
in the Exchange Rates table:

ExchKey = VALUE('Exchange Rates'[CurrencyKey] & 
FORMAT('Exchange Rates'[Date], "yyyymmdd"))
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The following screenshot shows the cardinality of ExchKey:

Figure 8.35 – Adding a primary key to the Exchange Rates table

We also need to create a corresponding foreign key column in the Internet Sales 
table. We can use the following DAX expressions to do so:

ExchKey = VALUE('Internet Sales'[CurrencyKey] & 'Internet 
Sales'[OrderDateKey])

Now, we will create a relationship between the Exchange Rates table and the 
Internet Sales table using the ExchKey column in both tables. Once this 
relationship has been created, we can create a new measure with a much simpler DAX 
expression than the one we used in Chapter 2, Data Analysis eXpressions and Data 
Modeling. We can use the following DAX expression to create the new measure:

Internet Sales in USD = 

    SUMX(

        RELATEDTABLE('Exchange Rates')

        , [Internet Sales] * 'Exchange Rates'[AverageRate]

    )
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If we use the Internet Sales and Internet Sales in USD measures side by side 
in a matrix visual, the results look as follows:

Figure 8.36 – A new version of the Internet Sales in USD measure
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The preceding scenario shows how data modeling can simplify our DAX expressions. 
Just as a reminder, here is the same measure that we created in Chapter 2, Data Analysis 
eXpressions and Data Modeling, without creating the relationship between the Exchange 
Rates table and the Internet Sales table:

Internet Sales USD = 

SUMX(

    NATURALINNERJOIN (

            SELECTCOLUMNS( 

                'Internet Sales'

, "CurrencyKeyJoin", 'Internet Sales'[CurrencyKey] * 1

                , "DateJoin", 'Internet Sales'[OrderDate] + 0

                , "ProductKey", 'Internet Sales'[ProductKey]

                , "SalesOrderLineNumber", 'Internet 
Sales'[SalesOrderLineNumber]

                , "SalesOrderNumber", 'Internet 
Sales'[SalesOrderNumber]

                , "SalesAmount", 'Internet Sales'[SalesAmount] 

                )

            , SELECTCOLUMNS (

                'Exchange Rates'

                , "CurrencyKeyJoin", 'Exchange 
Rates'[CurrencyKey] * 1

                , "DateJoin", 'Exchange Rates'[Date] + 0

                , "AverageRate", 'Exchange Rates'[AverageRate]

            )

        )

, [AverageRate] * [SalesAmount]

)Relationship cardinalities

In Power BI, we can create a relationship between two tables by linking a column from the 
first table to a column from the second table. There are three cardinalities of relationships 
in relational data modeling: one-to-one, one-to-many and many-to-many. In this 
section, we'll briefly look at each from a data modeling viewpoint in Power BI. 
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One-to-one relationships
A one-to-one relationship is when we create a relationship between two tables using 
the primary keys from both tables. Every row of the first table is related to a zero or one 
row from the second table. For that reason, the direction of filtering in a one-to-one 
relationship in Power BI is always bidirectional. When we have a one-to-one relationship, 
we can potentially combine the two tables into one table, unless the business case we 
are working on dictates otherwise. We generally recommend avoiding one-to-one 
relationships when possible.

One-to-many relationships
A one-to-many relationship, which is the most common relationship cardinality, is when 
each row of the first table is related to many rows of the second table. Power BI Desktop 
uses 1 - * to indicate a one-to-many relationship.

Many-to-many relationships
A many-to-many relationship is when a row of data from the first table is related to 
many rows of data in the second table, and a row of data in the second table is related 
to many rows in the first table. While in a proper star schema, all relationships between 
dimensions tables and fact tables are one-to-many, the many-to-many relationship is still 
a legitimate cardinality relationship in Power BI. With many-to-many relationships, the 
necessity of having a primary table in tables participating in the relationship goes away. 
When we define a many-to-many relationship between two tables, the default behavio sets 
the filtering to bidirectional. But depending on the scenario, we can force the direction 
of filtering to go in a single direction. Power BI uses * - * to indicate a many-to-many 
relationship. 
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An excellent example of a many-to-many relationship can be found in our sample file 
(Chapter 8, Data Modelling and Star Schema.pbix). This shows that the 
business needs to create analytical reports on top of the sales for the Customers with 
Yearly Income Greater Than $100,000 summary table at higher granular levels such 
as Quarter or Year. To allow the business to achieve this requirement, we just need to 
create a relationship between the Sales for Customers with Yearly Income 
Greater Than $100,000 table and the Date table using the Year-Month column 
in both tables. We set Cross filter direction to Single, so the Date table filters the Sales 
for Customers with Yearly Income Greater Than $100,000 table. 
The following screenshot shows the Manage relationships window upon creating the 
preceding relationship:

Figure 8.37 – Creating a many-to-many relationship
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As the preceding screenshot shows, a warning message appears at the bottom of  
the Manage relationships window, explaining that the columns participating in a  
many-to-many relationship do not contain unique values. So, we must be very careful 
when using a many-to-many relationship unless we know what we are doing is correct. 
The following screenshot shows how we can visualize the data after creating the 
relationship:

Figure 8.38 – Visualizing data from tables participating in a many-to-many relationship

It is important to note the granularity of the data. As the preceding screenshot shows, 
we can visualize the data at the Year and Month levels, but if we want to go one level 
further down, the data still represents the Year-Month level. So, it is crucial to make the 
visualization available to the consumers at a correct level, so that they do not get confused 
by seeing the data at an incorrect level of granularity.

Note
We suggest not using many-to-many cardinality in a relationship as it can 
dramatically elevate the level of model complexity, primarily when both tables 
participating in the relationship are also related to other tables. This situation 
can become even worse if we set the cross-filter direction of the relationship 
to Both. As a result, we may potentially need to write more complex DAX 
expressions, which means we end up facing poor model performance. Instead, 
it is better to handle a many-to-many relationship using bridge tables. More on 
this will be covered in Chapter 9, Star Schema and Data Modeling Common Best 
Practices.
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Filter propagation behavior
Filter propagation is one of the most important concepts to understand when building  
a data model in Power BI Desktop. When we create a relationship between two tables,  
 we are also filtering the data of one table by the data of another. We can see the 
direction of filter propagation in the Model view for each relationship. The following 
screenshot shows the relationship between the Product and Sales tables and the 
direction of filtering the data:

Figure 8.39 – The direction of filtering the data via a relationship

The relationship shown in the preceding screenshot shows the following:

• Each row of data in the Product table (the 1 side of the relationship) is related to 
many rows of data in the Sales table (the * side of the relationship).

• If we filter a row of data in the Product table, the filter propagates through the 
relationship from the Product table to the Sales table.

The following screenshot shows how the filter propagates from the Product table to the 
Sales table via the relationship between the two:
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Figure 8.40 – Filter propagation via a relationship

As the preceding screenshot shows, when we click on a row of the Product table and 
select that ProductKey equals 57, we are filtering the Product table and filtering the 
Sales table through the relationship. Therefore, the Sales table shows only the rows of 
data where ProductKey equals 57. While the filter we put on ProductKey propagates 
from the Product table to the Sales table, it does not go any further than the Sales 
table. The reason for this is that the Sales table does not have any relationships with any 
other tables, with the filter direction going from the Sales table to the other table. The 
following screenshot shows how the filtering flows in our latter example:

Figure 8.41 – Filter propagation

As the preceding screenshot shows, while the Product table and the Date table can  
filter the Sales table data, the filter does not flow in the opposite direction. Therefore,  
the Sale table can never filter the Date table with the relationships defined in the 
preceding model.
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Bidirectional relationships
Now that we understand filter propagation, we can understand what a bidirectional 
relationship means and how it affects our data model. A relationship is bidirectional when 
we set its Cross-filter direction to Both. The ability to set the direction of filtering to both 
directions is a nice feature, since it can help solve some data visualization challenges. An 
excellent example is when we use two slicers on the report page, with one showing the 
ProductCategory column data and the other showing the Full Name data. The end 
user expects to see only relevant data in each slicer when selecting a value from the slicers. 
The following image shows the preceding scenario:

Figure 8.42 – The Customer Name slicer filters the Sales data but not the Product Category data

As the preceding image illustrates, when the user selects a value from the Customer 
Name slicer, the filter propagates from the Customer table to the Sales table via the 
relationship between them. Therefore, the relevant data is shown in the table visual. 
So, here, we can see that Aaron Campbell bought some accessories and bikes. Yet, the 
Product Category slicer still shows all the product categories available in the data 
model. The following screenshot shows how the Product, Customer, and Sales tables 
relate to each other:
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Figure 8.43 – The relationships between the Product, Customer, and Sales tables

What the end user expects is to only see Accessories and Bikes in the Product 
Category slicer. One way to solve this issue is to set the relationship between the Sales 
table and the Product table to bidirectional by setting the relationship's Cross-filter 
direction to Both.

Follow these steps to change Cross-filter direction to Both directions:

1. Switch to the Model view.

2. Double-click the relationship between the Product and Sales tables.

3. Set the Cross-filter direction to Both.

4. Click OK.



368     Data Modeling Components

The following screenshot shows the preceding steps:

Figure 8.44 – Making a relationship bidirectional

The following screenshot shows how the relationship changed in the Model view:

Figure 8.45 – Visual representation of a bidirectional relationship
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Now, when we go back to the Report view, we will see that making a relationship between 
the Date and Sales tables resolved this issue. The following image shows the results 
after making the relationship bidirectional:

Figure 8.46 – The Customer Name slicer filters the Sales data and the Product Category data

Now, if the user selects a value from the Product Category slicer, the filter will propagate 
via the current relationship from the Product table to the Sales table. However, it will 
not propagate from the Sales table to the Customer table via the current relationship, 
since the relationship between the Sales table and the Customer table is not 
bidirectional. So, we should also set the latter relationship to bidirectional. 

Looking at the preceding scenario raises an important point: we may end up making 
all the model's relationships bidirectional. Using bidirectional relationships can be a 
killer, especially in larger data models with more complex relationships. Bidirectional 
relationships have adverse effects on model performance. It also elevates the complexity 
level of DAX expressions dramatically. We suggest avoiding bidirectional relationships as 
much as possible. There are some more advanced techniques to solve similar scenarios to 
what we've covered in better ways without using bidirectional relationships, which we will 
cover in Chapter 9, Star Schema and Data Modeling Common Best Practices.
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Summary
In this chapter, we learned about the data modeling components in Power BI Desktop. 
We learned about table and field properties; we looked at feature tables and how to make 
a table from our data model accessible across the organization; and we also learned how 
to build summary tables by creating calculated tables in DAX. We then dived deeper into 
one of the essential concepts in data modeling, which is relationships. We learned about 
different relationship cardinalities and filter propagation, and we also understood the 
concept of bidirectional relationships. 

In the next chapter, Star Schema and Data Modeling Common Best Practices, we'll look at 
many of the concepts we learned about in this chapter in more detail.



9
Star Schema and 

Data Modeling 
Common Best 

Practices
In the previous chapter, we learned a lot about data modeling components in Power BI 
Desktop, including table and field properties. We also learned about the feature tables 
and how they make a table from our data model accessible across the organization. We 
then learned how to build summary tables with DAX. Then we looked at the relationships 
in more detail; we learned about different relationship cardinalities, filter propagation, 
and bidirectional relationships. In this chapter, we look at some star schema and data 
modeling best practices, including the following:

• Dealing with many-to-many relationships

• Being cautious with bidirectional relationships

• Dealing with inactive relationships

• Using configuration tables
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• Avoiding calculated columns when possible

• Organizing the model

• Reducing model size by disabling auto date/time

In this chapter, we use the Chapter 9, Star Schema and Data Modelling 
Common Best Practices.pbix sample file to go through the scenarios.

Dealing with many-to-many relationships
In the previous chapter, Chapter 8, Data Modeling Components, we discussed different 
relationship cardinalities. We went through some scenarios to understand the  
one-to-one, one-to-many, and many-to-many cardinalities. We showed an example  
of creating a many-to-many relationship between two tables using non-key columns. 
While creating a relationship with many-to-many cardinality may work for smaller  
and less complex data models, it can cause some severe issues if we do not precisely  
know what we are doing. In some cases, we may get incorrect results in totals; we might 
find some missing values or get poor performance in large models; while in other 
cases, we may find the many-to-many cardinality very useful. The message here is that, 
depending on the business case, we may or may not use many-to-many cardinality; it 
depends on what works the best for our model while satisfying the business requirements. 
For instance, the many-to-many cardinality works perfectly fine in the scenario we went 
through in Chapter 8, Data Modeling Components, in the Many-to-many relationships 
section. Just as a reminder, the scenario was that the business needed to create analytical 
sales reports for Customers with Yearly Income Greater Than $100,000 from a summary 
table. We created a calculated table on the granularity of Customer, Product, and 
Year-Month. To enable the business to achieve the requirement, we needed to create 
a relationship between the Sales for Customers with Yearly Income Greater Than 
$100,000 calculated table and the Date table using the Year-Month column on both 
sides. The following diagram shows the many-to-many cardinality relationship between 
the Sales for Customers with Yearly Income Greater Than $100,000 table and the Date 
table via the Year-Month column:
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Figure 9.1 – A many-to-many cardinality relationship

In the preceding model, the Year-Month column is not a key column in any of the  
tables participating in the relationship, which means the Year-Month column has 
duplicate values on both sides. When we create a relationship between two tables using 
non-key columns, we are creating a many-to-many cardinality relationship. We insist 
on using the term "cardinality" for this kind of relationship to avoid confusing it with the 
classic many-to-many relationship. In fact, in relational data modeling, the many-to-many 
relationship is just a conceptual relationship between two tables via a bridge table. Indeed, 
in classic relational data modeling, we cannot create a physical many-to-many relationship 
between two tables. Instead, we always require creating relationships between the primary 
key on the one side of the relationship to the corresponding foreign key column on the 
many side of the relationship. Therefore, the only legitimate kinds of relationships from 
a classic relational data modeling viewpoint are the one-to-one and the one-to-many 
relationships. Hence, there is no such relationship kind like many-to-many.
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Nevertheless, many business scenarios require many-to-many relationships. Consider 
banking: a customer can have many accounts, and an account can link to many customers 
when it is a joint account; or in an education system, a student can have multiple teachers, 
and a teacher can have many students. 

Let's use our Chapter 9, Star Schema and Data Modelling Common Best 
Practices.pbix sample file with a scenario.

The business needs to analyze their online customers' buying behavior for Quantity 
Sold over Sales Reasons. The following diagram shows the data model. Let's have  
a look at it:

Figure 9.2 – Analyzing Internet Sales by Sales Reasons
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As we see in the preceding diagram, we have a Sales Reasons table containing 
the descriptive data, and we also have an Internet Sales Reasons table having 
a one-to-many relationship with the Sales Reasons table. Looking closer at the 
Internet Sales Reasons table reveals that this table does not have any sales 
transactions in it. It only contains three columns, the SalesOrderLineNumber, 
SalesOrderNumber, and SalesReasonKey columns. On the other hand, we 
have the Customer table with a one-to-many relationship to the Internet Sales 
table. We keep all sales transactions in the Internet Sales table, where each row 
of data is unique for the combination of the SalesOrderLineNumber and the 
SalesOrderNumber columns. But there is currently no relationship between the 
Customer table and the Sales Reasons table. Each customer may have several 
reasons to buy products online, and each sales reason relates to many customers. 
Therefore, conceptually, there is a many-to-many relationship between the Customer 
and the Sales Reason tables. It is now time to refer back to the classic type of  
many-to-many relationship we always see in relational data modeling. As mentioned 
earlier, in relational data modeling, unlike in Power BI, we can only implement the  
many-to-many relationship using a bridge table regardless.

Many-to-many relationships using a bridge table
In classic relational data modeling, we put the primary keys of both tables participating  
in the relationship into an intermediary table referred to as a bridge table. The bridge 
tables usually are available in the transactional source systems. For instance, there is 
always a many-to-many relationship between a customer and a product in a sales system.  
A customer can buy many products, and a product can end up in many customers' 
shopping bags. What happens in the sales system is that when we go to the cashier to pay 
for the products we bought, the cashier scans each product's barcode. So the system now 
knows which customer bought which product. 
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Using the Star Schema approach, we spread the columns across dimensions and facts 
when we design a data warehouse. Therefore, in a sales data model (in a sales data 
warehouse), there is always a many-to-many relationship between the dimensions 
surrounding a fact table via the fact table itself. So, when in a sales data model designed  
in the Star Schema approach, we have a Customer table and Product table containing 
the descriptive values. The Customer and the Product tables are dimensions from  
a Star Schema perspective. We also have a Sales table that holds the foreign keys for 
both Customer and Product tables. The Sales table also keeps the numeric values 
related to sales transactions such as sales amount, tax amount, ordered quantity, and 
so on. The Sales table is a fact table in the Star Schema approach. Then we create the 
relationships between the Customer table, the Product table, and the Sales table. The 
following diagram shows how the Customer, the Product, and the Internet Sales 
tables are related:

Figure 9.3 – Relationships between Customer, Product, and Internet Sales



Dealing with many-to-many relationships     377

In the preceding data model, we have the following relationships:

• A one-to-many relationship between Customer and Sales

• A one-to-many relationship between Product and Sales

• A many-to-many relationship between Customer and Product (via Sales table)

The first two relationships are trivial as we can visually see them in the data model. 
However, the latter is somewhat a conceptual relationship handled by the Sales table. 
From a Star Schema standpoint, we do not call the Sales table a bridge table, but the 
principles remain the same. In data modeling using the Star Schema approach, a bridge 
table is a table created specifically for managing many-to-many relationships. The  
many-to-many relationships usually happen between two or more dimensions. However, 
there are some cases when two fact tables are involved in a many-to-many relationship. 
In data modeling in the Star Schema, the fact tables containing the foreign keys of the 
dimensions without any other additive values are called factless fact tables. 

Our scenario already has a proper bridge table to satisfy the many-to-many relationship 
between the Customer table and the Sales Reasons table. We only need to create 
a relationship between the Internet Sales table and the Internet Sales 
Reasons table (the bridge). But we know that the xVelocity engine does not support 
composite keys for creating physical relationships. Therefore, we have to add a new 
column in both the Internet Sales table and the Internet Sales Reasons 
table, concatenating the SalesOrderLineNumber and the SalesOrderNumber 
columns. We can take care of the new column either in Power Query or DAX. For 
simplicity, we create the calculated column using the following DAX expressions.

In the Internet Sales table, we use the following DAX expression to create a new 
calculated column:

SalesReasonsID = 'Internet Sales'[SalesOrderNumber] & 'Internet 
Sales'[SalesOrderLineNumber]

In the Internet Sales Reason table, we use the following DAX expression:

SalesReasonsID = 'Internet Sales Reasons'[SalesOrderNumber] & 
'Internet Sales Reasons'[SalesOrderLineNumber]
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Now that we have created the SalesReasonsID column in both tables, we create 
a relationship between the two tables. The following screenshot shows the Create 
relationship window to create a one-to-many relationship between the Internet 
Sales and the Internet Sales Reasons tables:

Figure 9.4 – Creating a relationship between the Internet Sales and the Internet Sales Reasons tables
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The following diagram shows our data model after creating the preceding relationship:

Figure 9.5 – The data model after creating a new relationship between the two tables

From a data modeling perspective, there is now a many-to-many relationship between the 
Internet Sales table and the Sales Reasons table via the bridge (the Internet 
Sales Reasons) table. Consequently, there is also a many-to-many relationship 
between the Customer table and the Sales Reason table. We can now visualize the 
data and see whether we can satisfy the business requirements to analyze customers' 
buying behavior for Quantity Sold over Sales Reasons. To visualize the data, 
we need to create a new measure to show Quantity Sold with the following DAX 
expression:

Quantity Sold = SUM('Internet Sales'[OrderQuantity])
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Let's visualize the data and see how it works:

1. Put a Matrix visual on the reporting canvas.

2. Choose the Full Name column from the Customer table from the  
Rows dropdown. 

3. Choose the Sales Reason Name column from the Sales Reasons table from 
the Columns dropdown.

4. Choose the Quantity Sold measure from the Values dropdown.

The following screenshot shows the preceding steps:

Figure 9.6 – Visualizing customers' full name, sales reason, and quantity sold in a matrix

Looking at the results reveals an issue. The Quantity Sold values are repeated for 
Sales Reason Name.  The reason is filter propagation: the Full Name filter flows 
from the Customer table to the Internet Sales table; therefore, the Quantity 
Sold values are calculated correctly for the customers. 
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However, the Sales Reason Name cannot get to the Inter Sales table as we 
currently set the Cross filter direction of the relationship between the Internet 
Sales table and the Internet Sales Reasons table to Single. The relationship 
between the latter tables is one-to-many. The one side table is the Internet Sales 
table, and the many side table is Internet Sales Reasons. Hence, the filters on the 
Internet Sales flow to the Internet Sales Reasons table but not the other 
way round. So we need to set the Cross filter direction of the relationship between the 
Internet Sales and the Internet Sales Reasons tables to Both. The following 
screenshot shows the preceding setting:

Figure 9.7 – Setting up a bidirectional relationship
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When we switch back to the Report view, we see that the matrix shows correct results. 
The following screenshot shows the corrected results after setting the relationship to 
bidirectional:

Figure 9.8 – The correct results shown after setting the relationship to bidirectional

Looking at the Total row shows that the price is the most motivator for customers to buy 
the products with the largest Quantity Sold total value. But there is still something  
a bit confusing about the data: the Total value for each row doesn't make too much sense. 
Look at the highlighted row: the Total value is 4 while the data shows that the Total 
value should be 5. Here is the thing: the relationship between Customer and Sales 
Reasons is many-to-many, so there can be more than one reason for a customer to buy 
a product. In the highlighted row, Aaron Wang had at least more than one reason to buy 
a product. Let's analyze the situation in more detail. In the next few steps, we put another 
Matrix on the report, this time showing Quantity Sold by Product and Sales 
Reasons. Then we click a customer from the first matrix visual, which filters the second 
matrix. This way, we can identify for which product the customer had more than one 
reason to buy: 

1. Put another Matrix on the report canvas.

2. Choose the Product Name column from the Product table in the Rows 
dropdown.

3. Choose the Sales Reason Name column from the Sales Reasons table  
in the Columns dropdown.
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4. Choose Quantity Sold measure in the Values dropdown.

5. Click on the Aaron Wang row from the previous Matrix visual to cross-filter the 
new Matrix.

The following screenshot shows the results after clicking on the Aaron Wang row:

Figure 9.9 – Filtering Quantity Sold by Product and Sales Reasons with Customer

As the preceding screenshot shows, while Aaron has two reasons (Manufacturer and 
Quality) to buy the Road-150 Red, 52, he still bought only one item; therefore, the 
Total row shows 1 instead of 2, which is correct. But this may confuse the end users if they 
do not have a complete understanding of the business. In that case, we have two options: 
to disable column subtotals, or to modify the Quantity Sold calculation to omit the 
Total values for Sales Reasons. The first option is working on the visual level, so we 
have to do it for each visual having a column from the Sales Reasons table, and the 
Quantity Sold measure, while the latter doesn't have a Total value. We can modify the 
Quantity Sold measure as follows:

Quantity Sold = 

    IF(

        HASONEVALUE('Sales Reasons'[SalesReasonKey])

        , SUM('Internet Sales'[OrderQuantity])
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        , BLANK()

        )

Hiding the bridge table
After we have implemented the many-to-many in our data model, it is good to hide the 
bridge table from the data model. We only have the bridge table in our data model as it 
carries the key columns of both tables participating in the many-to-many relationship. 
Hiding the bridge table also avoids confusion for other report creators who connect to 
our dataset to build the reports. To hide a table, we only need to switch to the Model view 
and click the hide/unhide ( ) button at the top right of the table. The following diagram 
shows the data model after hiding the Internet Sales Reasons table:

Figure 9.10 – Hiding bridge tables from the Model view
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Being cautious with bidirectional relationships
One of the most misunderstood and somehow misused Power BI features in data 
modeling is setting the Cross filter direction to Both. This is widely known as a 
bidirectional relationship. There is nothing wrong with setting a relationship to 
bidirectional if we know what we are doing and are conscious of its effects on our data 
model. We have seen Power BI developers who have many bidirectional relationships in 
their model and consequently end up with many issues, such as getting unexpected results 
in their DAX calculations or being unable to create a new relationship due to ambiguity. 
The reason that overusing bidirectional relationships increases the model ambiguity lies 
in filter propagation. In Chapter 8, Data Modeling Components, we covered the concept 
of filter propagation as well as bidirectional relationships. Chapter 8 looked at a scenario 
where the developer needed to have two slicers on a report page, one for the product 
category and another for filtering the customers. It is indeed a common scenario that the 
developers decide to set the relationships to bidirectional, which is no good. On many 
occasions, if not all, we can avoid creating a bidirectional relationship. Depending on the 
scenario, we may use different techniques. Let's look at the scenario we used in Chapter 8, 
Data Modeling Components, in the Bidirectional relationships section again. We solve the 
scenario where we have two slicers on the report page without making the relationship 
between the table bidirectional. The following diagram shows the data model: 

Figure 9.11 – Internet Sales data model
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The following diagram shows the reporting requirements:

Figure 9.12 – The Customer Name slicer filters the Sales data but not the Product Category data

As the preceding diagram shows, the Customer Name slicer filters Internet Sales. 
Still, the filter does not propagate to the Product Category table as the Cross filter 
direction of the one-to-many relationship between the Product Category table 
and the Internet Sales table is set to single; therefore, the filters flow from the 
Product Category table to the Internet Sales table but not the way round. 
So, let's solve the problem without physically changing the Cross filter direction of the 
relationships. The way to solve the scenario is to set the relationships to bidirectional 
programmatically using the CROSSFILTER() function in DAX. The following measure 
is a modified version of the Internet Sales measure, where we programmatically 
made the relationships between the Product table, the Internet Sales table, and 
the Customer table bidirectional:

Internet Sales Bidirectional = 

    CALCULATE(

        SUM('Internet Sales'[SalesAmount])

        , CROSSFILTER(Customer[CustomerKey], 'Internet 
Sales'[CustomerKey], Both)

        , CROSSFILTER('Product'[ProductKey], 'Internet 
Sales'[ProductKey], Both)

        )

Now we use the new measure instead of the Internet Sales measure in the Matrix 
visual. We also need to add the new measure in the visual filters on both slicers and set 
the filter's value to is not blank. The following diagram shows the preceding process:
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Figure 9.13 – Using a measure in the visual filter for slicers

As the preceding diagram shows, the Customer Name slicer is successfully filtering the 
Product Category slicer and vice versa. The following steps show how it works on the 
Customer Name slicer; the same happens on the Product Category slicer:

1. The slicer gets the list of all customers from the Full Name column. 

2. The visual filter kicks in and applies the filters. The Internet Sales Bidirectional 
measure used in the filter forces the slicer visual to run the measure and omit the 
blank values.

3. The Internet Sales Bidirectional measure forces the relationships between the 
Product table, the Internet Sales table, and the Customer table to be 
bidirectional for the duration that the measure runs.

If we do not select anything on the slicers, then both slicers show the values having at least 
one row within the Internet Sales table.

The key message here is that you do not use bidirectional relationships unless you know 
what you are doing. In some cases, omitting the bidirectional relationship makes the  
DAX expressions too complex and hence not performant. You, as the data modeler, 
should decide which method works the best for your model.
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Dealing with inactive relationships
In real-world scenarios, the data models can get very busy, especially when we are creating 
a data model to support enterprise BI; there are many instances that we have an inactive 
relationship in our data model. In the majority of cases, there are two reasons that  
a relationship is inactive, as follows:

• The table with an inactive relationship is reachable via multiple filter paths.

• There are multiple direct relationships between two tables.

In both preceding cases, the engine does not allow to activate an inactive relationship  
to avoid ambiguity across the model.

Reachability via multiple filter paths
A filter path between two tables is when the two tables are related via multiple 
tables. Therefore, the filter propagates from one table to the other via multiple hops 
(relationships). The following diagram shows a data model with an inactive relationship:

Figure 9.14 – Inactive relationship due to multiple paths detected
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As the preceding diagram shows, there is already a relationship between the Sales 
Territory table and the Internet Sales table. Power BI raises an error message 
indicating that activating the relationship between the Geography table and Customer 
table will cause ambiguity in between Sales Territory and Internet Sales if 
we attempt to activate the inactive relationship. The following diagram illustrates how the 
Internet Sales table would be reachable through multiple filter paths:

Figure 9.15 – Internet Sales reachability through multiple paths

Looking at the preceding diagram shows how the Internet Sales table is reachable 
via multiple paths. The following steps show this happens when we put a filter on the 
Sales Territory table: 

1. The filter propagates to the Geography table via the relationship between Sales 
Territory and Geography.

2. The filter then propagates again to the Customer table through the relationship 
between Geography and Customer.

3. The filter propagates one more time, reaching Internet Sales via the 
relationship between Customer and Internet Sales.
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The Sales Territory table and the Internet Sales table are related through 
two hops in a filter path. The red arrows in Figure 9.15 show a filter path between 
Sales Territory and Internet Sales. But there is another filter path between 
the two tables, which is shown by a purple arrow in Figure 9.15. It is now clear why the 
relationship between Geography and Customer is inactive.

Multiple direct relationships between two tables
The other common cause of having an inactive relationship is when there is more than one 
direct relationship between two tables. Having multiple relationships means that we can 
use each relationship for a different analytical calculation. The following diagram shows 
that the Date table is related to the Internet Sales table via several relationships:

Figure 9.16 – Two tables with multiple direct relationships
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We can look at the Manage relationships window to see what those relationships are. The 
following screenshot shows the Manage relationships window:

Figure 9.17 – The Date table and the Internet Sales table are related via multiple relationships

As the preceding screenshot shows, there are three columns in the Internet Sales 
table participating in the relationships, and all of them are legitimate. Each relationship 
filters the Inter Sales table differently, but we can have only one active relationship 
between two tables at a time. Currently, the relationship via the OrderDateKey 
column from the Internet Sales table and the DateKey column from the Date 
table is the active relationship that propagates the filter from the Date table to the 
Internet Sales table. This behavior means that when we use the Year column 
from the Date table and the Internet Sales measure from the Internet Sales 
table, we are slicing the Internet Sales by order date year. But what if the 
business needs to analyze the Internet Sales by Due Date? What if the business 
also needs to analyze the Internet Sales by Ship Date? We obviously cannot 
physically make a relationship active and inactive to solve this issue. We have to solve 
the problem programmatically using the USERELATIONSHIP() function in DAX. 
The USERELATIONSHIP() function activates an inactive relationship for the duration 
that the measure is calculating. So to meet the preceding business requirements, we can 
create two new measures. The following DAX expression activates the DueDateKey -> 
DateKey relationship:

Internet Sales Due = 

    CALCULATE([Internet Sales]

        , USERELATIONSHIP('Internet Sales'[DueDateKey], 
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'Date'[DateKey])

    )

The following DAX expression is to activate the ShipDateKey -> DateKey relationship:

Internet Sales Shipped = 

    CALCULATE([Internet Sales]

        , USERELATIONSHIP('Internet Sales'[ShipDateKey], 
'Date'[DateKey])

    )

Let's use the new measure side by side with the Internet Sales measure and the 
Full Date column from the Date table in a table to see the differences between values:

Figure 9.18 – Activating inactive relationships programmatically
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Using configuration tables
There are many cases when the business needs to analyze some of the business metrics 
in clusters. Some good examples are analyzing sales by unit price range, analyzing sales 
by product cost range, analyzing customers by their age range, or analyzing customers by 
commute distance. In all of the preceding examples, the business does not need to analyze 
constant values; instead, it is more about analyzing a metric (sales, in the preceding 
examples) by a range of values. 

Some other cases are related to data visualization, such as dynamically changing the color 
of values when they are in a specific range. An example can be to change the color of 
values in all visuals analyzing sales to red if the sales value for the data points is less than 
the average sale over time. This is a relatively advanced analysis that can be reused in our 
reports that keeps the consistency of our data visualization.

For all of the preceding examples, we need to define configuration tables. In the latter 
example, we will see how data modeling can positively affect our data visualization.

Segmentation
As stated earlier, there are cases when the business needs to analyze their business metrics 
by clusters of data. This type of analysis is commonly known as segmentation, as we are 
analyzing the business values of different segments. Let's continue with an example. The 
business needs to analyze Internet Sales by UnitPrice ranges. To be able to do 
the analysis, we need to have the definition of unit price ranges. The following list shows 
the definition of unit price ranges:

• Low: When the UnitPrice is between $0 and $50

• Medium: When the UnitPrice is between $51 and  $450

• High: When the UnitPrice is between $451 and  $1,500

• Very high: When the UnitPrice is greater than $1,500

At this point, you may think of adding a calculated column to the Internet Sales 
table to take care of the business requirement. That is right, but what if the business 
needs to modify the definition of unit price ranges several times in the future? We need 
to frequently modify the calculated column, which does not sound like a viable option. 
A better option is to have the definition of unit price ranges in a table. We can store the 
definition in an Excel file accessible in a shared OneDrive for Business folder. It 
can be a SharePoint List that is accessible to the business to make any necessary changes. 
For simplicity, we manually enter the preceding definition as a table using the Enter data 
feature in Power BI. 
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Note
We do not recommend entering the definition values manually in Power BI 
using the Enter data feature in your real-world scenarios. Suppose the business 
needs to modify the values. In that case, we have to modify the report in Power 
BI Desktop and republish the report to the Power BI service.

The following screenshot shows a Unit Price Ranges table created in Power BI:

Figure 9.19 – Unit Price Ranges table

Now that we have the definitions data available in Power BI, we need to add a calculated 
column in the Internet Sales table. The new calculated column looks up the Price 
Range value for each UnitPrice value within the Internet Sales table. To do so, 
we have to compare the UnitPrice value of each row from the Internet Sales table 
with the values of the From and To columns from the Unit Price Ranges table. The 
following DAX expressions cater for that:

Price Range = 

    CALCULATE(

        VALUES('Unit Price Ranges'[Price Range])

        , FILTER('Unit Price Ranges'

            , 'Unit Price Ranges'[From] < 'Internet 
Sales'[UnitPrice]

                && 'Unit Price Ranges'[To] >= 'Internet 
Sales'[UnitPrice]

            )

    )

The following screenshots show how we can now quickly analyze the Internet Sales 
measure by Price Range:
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Figure 9.20 – Analyzing Internet Sales by price range

As a minor note, look at how the bars are sorted in the bar chart. They are not 
alphabetically sorted by Price Range name nor by the Internet Sales values.  
You already learned how to manage column sorting in the previous chapter, so I leave  
this to you to find out how that is possible. 

We can now click on a bar within the bar chart and see what products are falling into  
a selected price range.
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Dynamic conditional formatting with measures
So far, we have discussed many aspects of data modeling, as the primary goal of this  
book is to learn how to deal with various day-to-day challenges. This section discusses  
an essential aspect of data visualization, color coding, and how data modeling can ease 
many advanced data visualization challenges. Color coding is one of the most compelling 
and efficient ways to provide pertinent information about the data. In this section, we 
make a bridge between data modeling and data visualization.

We could color code the visuals from the day that Power BI was first born. However, 
conditional formatting was not available on many visuals for a long time. Luckily, we can 
now set conditional formatting on almost all default visuals (and many custom visuals) in 
Power BI Desktop. Let's continue with a scenario. 

The business decided to use predefined color codes and use them dynamically in various 
visuals so that the visuals' colors are picked depending on the value of the Sales MoM% 
measure. The Sales MoM% measure calculates the percentage of sales changes based on 
the sales values for each year in comparison with the sales values for the previous year. 
The goal is to visualize Sales MoM% in a Clustered column chart. The color for 
each data point should be calculated based on a config table. The following diagram shows 
the structure of the config table:

Figure 9.21 – Config table defining color codes
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1. First of all, we need to enter the data in the preceding diagram into a table in Power 
BI. We name the new table ConfigColour.

The following screenshot shows the ConfigColour table in Power BI Desktop:

Figure 9.22 – The ConfigColour table

2. Now we need to create a Sales MoM% measure. The following DAX expression 
calculates sales for last month (Sales LM):

Sales LM = 

    CALCULATE([Internet Sales]

        , DATEADD('Date'[Full Date], -1, MONTH)

        )

3. After we have calculated Sales LM, we just need to calculate the percentage of 
differences between the Internet Sales measures and the Sales LM measure. 
The following expression caters for that:

Sales MoM% = DIVIDE([Internet Sales] - [Sales LM], [Sales 
LM])

4. The next step is to create two textual measures. The first measure picks a relevant 
value from the ColourHex column, and the other one picks the relevant value 
from the Status column from the ConfigColour table. Both textual measures 
pick their values from the ConfigColour table based on the value of the Sales 
MoM% measure. 
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Before we implement the measures, let's understand how the data within the 
ConfigColour table supposed to work. The following points are essential to understand 
how to work with the ConfigColour table:

• The ConfigColour contains 10 rows of data.

• The ColourHex contains hex codes for colors.

• The Range% contains a decimal number between 0.1 and 1.

• The Status column contains a textual description for each color.

• The Index column contains the table index.

The preceding points look easy to understand, but the Range% column is a bit tricky. 
When we format the Range% column with percentage, then values are between 10% 
and 100%. Each value, however, represents a range of values, not a constant value. For 
instance, 10% means all values from 0% up to 10%. In the same way, 20% means all values 
between 11% and 20%. The other point to note is when we format the Range% values 
with percentage, each value is divisible by 10 (such as 10, 20, 30,…). 

The new textual measures pick the relevant values either from the ColourHex column or 
from the Status column based on the Range% column and the Sales MoM% measure. 
So we need to identify the ranges the Sales MoM% values fall in, then compare them 
with the values within the ColourHex column. The following formula guarantees that 
the Sales MoM% values are divisible by 10, so we can later find the matching values 
within the ColourHex column:

CONVERT([Sales MoM%] * 10, INTEGER)/10

Here is how the preceding formula works:

1. We multiply the value of Sales MoM% by 10, which returns a decimal value 
between 0 and 10 (we will deal with the situations when the value is smaller than  
0 or bigger than 10).

2. We convert the decimal value to an integer to drop the digits after the decimal 
point.

3. Finally, we divide the value by 10.
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When we format the results in percentage, the value is divisible by 10. We then check 
whether the value is smaller than 10%, we return 10%, and if it is bigger than 100%, we 
return 100%.

It is now time to create textual measures. The following DAX expression results in a hex 
color. We will then use the retrieved hex color in the visual's conditional formatting:

Sales MoM% Colour = 

var percentRound = CONVERT([Sales MoM%] * 10, INTEGER)/10

var checkMinValue = IF(percentRound < 0.1, 0.1, percentRound)

var checkMaxValue = IF(checkMinValue > 1, 1, checkMinValue)

return

CALCULATE(

    VALUES(ConfigColour[ColourHex])

    , FILTER( ConfigColour

        , 'ConfigColour'[Range%] = checkMaxValue

        )

    )

As you can see in the preceding expression, the checkMinValue and checkMaxValue 
variables are adjusting the out-of-range values. The following DAX expression results in  
a description calculated in a similar way to the previous measure:

Sales MoM% Description = 

var percentRound = CONVERT([Sales MoM%] * 10, INTEGER)/10

var checkMinValue = IF(percentRound < 0.1, 0.1, percentRound)

var checkMaxValue = IF(checkMinValue > 1, 1, checkMinValue)

return

CALCULATE(

    VALUES(ConfigColour[Status])

    , FILTER( ConfigColour

        , 'ConfigColour'[Range%] = checkMaxValue

        )

    )
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Now that we have created the textual measures, we can use them to format the visuals 
conditionally (if supported). The following visuals currently support conditional 
formatting:

Figure 9.23 – Power BI default visuals supporting conditional formatting

The following steps show how to format a clustered column chart conditionally:

1. Put a Clustered column chart on a new report page.

2. Choose the Year-Month column from the Date table from the visual's Axis 
dropdown.

3. Choose the Sales MoM% measure from the visual's Values dropdown.

4. Choose the Sales MoM% Description measure from the Tooltips dropdown.

5. Switch to the Format tab from the Visualizations pane.

6. Expand the Data colors.

7. Click the fx button.

8. Select Field value from the Format by drop-down menu.

9. Select the Sales MoM% Colour measure from the Based on field menu.

10. Click OK.
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The following screenshot shows the preceding steps:

Figure 9.24 – Applying dynamic conditional formatting on a clustered column chart

The following screenshot shows the clustered column chart after the preceding settings:

Figure 9.25 – The clustered column chart after it has been conditionally formatted
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With this technique, we can create compelling data visualizations that can quickly provide 
many insights about the data. For instance, the following screenshot shows a report page 
analyzing sales by date. I added a matrix showing Internet Sales by Month and Day: 

Figure 9.26 – Color-coded Sales report

I used the Sales MoM% Colour measure to color code the Matrix. In the preceding 
report, every cell of the Matrix shows the sales amount by weekday for the entire month. 
However, the color of the cell shows the comparison of current sales against the same 
weekday last month. For instance, if we look at the 2012-Jun sales, we quickly see that the 
Monday sales were excellent compared to 2011-Jun (colored in dark blue).

The preceding report page might not be a perfect example of a high-standard data 
visualization. However, without a doubt, it provides many more insights than a similar 
report page without color coding. In real-world scenarios, we might have some more 
colors to show the severity of the metric we are analyzing for negative numbers. I leave 
this to you as an exercise to use this technique to create very professional-looking reports.
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Avoiding calculated columns when possible
The ability to create calculated columns is one of the most essential and powerful features 
in DAX. Calculated columns, as the name suggests, are computed based on a formula; 
therefore, the calculated column values are not available either in the source systems or in 
the Power Query layer. The values of the calculated columns are computed during the data 
refresh and then stored in memory. It is important to note that the calculated columns 
reside in memory unless we unload the whole data model from memory, which in Power 
BI means when we close the file in Power BI Desktop or switch to other contents in the 
Power BI service. Calculated columns, after creation, are just like any other columns, so 
we can use them in other calculated columns, measures, calculate tables, or for filtering 
the visualization layer. A common approach between developers is to use calculated 
columns to divide complex equations into smaller chunks. That is precisely the point 
when we suggest stopping excessive use of calculated columns. The general rules of thumb 
for using calculated columns are as follows:

• Create a calculated column if you are going to use it in filters.

• Even though you need to use the calculated column in filters, consider creating the 
new column in the Power Query layer when possible.

• Do not create calculated columns if you can create a measure with the same results.

• Always think about the data cardinality when creating calculated columns. 
The higher the cardinality, the lower the compression and the higher memory 
consumption.

• Always have a firm justification for creating a calculated column, especially when 
you are dealing with large models.

• Use the View Metrics tool in DAX Studio to monitor the size of the calculated 
column, which directly translates to memory consumption.

Let's look at an example in this chapter's sample file. The business needs to calculate 
Gross Profit. To calculate Gross Profit, we have to deduct total costs from total 
sales. We can create a calculated column with the following DAX expression that gives us 
Gross Profit for each row of the Internet Sales table:

Gross Profit = 'Internet Sales'[SalesAmount] - 'Internet 
Sales'[TotalProductCost]



404     Star Schema and Data Modeling Common Best Practices

We can then create the following measure to calculate Total Gross Profit:

Total Gross Profit with Calc Column = SUM('Internet 
Sales'[Gross Profit])

Let's have a look at the preceding calculated column in DAX Studio to get a better 
understanding of how it performs. Perform the following steps using View Metrics in  
DAX Studio:

1. Click the External Tools tab from the ribbon.

2. Click DAX Studio.

3. In DAX Studio, click the Advanced tab from the ribbon.

4. Click View Metrics.

5. Expand the Internet Sales table.

6. Find the Gross Profit column.

The following screenshot shows the preceding steps:

Figure 9.27 – View Metrics in DAX Studio
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As you see in the preceding screenshot, the Gross Profit column size is 15,480 bytes 
(approximately 15 KB) with the cardinality of 45 consuming 0.31% of the table size. The 
Internet Sales table is a small table with 60,398 rows. So we can imagine how the 
column size can grow in larger tables.

While the process of creating a calculated column then getting the summation of the 
calculated column is legitimate, it is not the preferred method. We can compute Total 
Gross Profit in a measure with the following DAX expression:

Total Gross Profit Measure = SUMX('Internet Sales', 'Internet 
Sales'[SalesAmount] - 'Internet Sales'[TotalProductCost])

The difference between the two approaches is that the values of the Gross Profit 
calculated column computed at the table refresh time. It resides in memory, while its 
measure counterpart aggregates the gross profit when we use it in a visual. So when we use 
the Product Category column from the Product table in a clustered column 
chart and the Total Gross Profit Measure, the values of the Total Gross 
Profit Measure are aggregated for the number of product categories in memory. 
The following screenshot shows the Total Gross Profit Measure by Product 
Category in a clustered column chart:

Figure 9.28 – Total Gross Profit Measure by Product Category in a clustered column chart

As the preceding screenshot shows, the Total Gross Profit Measure is aggregated in the 
Product Category level with only three values, so the calculation is superfast with minimal 
memory consumption. 
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Organizing the model
There are usually several roles involved in a Power BI project in real-world enterprise 
BI scenarios. From a Power BI development perspective, we might have data modelers, 
report writers, quality assurance specialists, support specialists, and so on. The data 
modelers are the ones who make the data model available for all other content creators, 
such as report writers. So, it is essential to make a model that is as organized as possible. 
In this section, we look at several ways to organize our data models.

Hiding insignificant model objects
One of the essential ways to keep our model tidier is to hide all insignificant objects from 
the data model. In many cases, we have some objects in the data model that are not used 
anywhere else. However, we cannot remove them from the data model as we may require 
them in the future. So, the best practice is to hide all those objects unless they are going to 
serve a business requirement. In the following few sections, we discuss the best candidate 
objects for hiding in our data model. 

Hiding unused fields and tables
There are many cases when we have some fields (columns or measures) or tables in the 
data model that are not used anywhere else. Unused fields are the measures or columns 
that fulfil the following criteria:

• Are not used in any visuals in any report pages

• Are not used within the Filters pane

• No measures, calculated columns, calculated tables, or calculation groups 
referencing those fields

• No roles within the row level security reference those fields

If we have some fields falling in all of the preceding categories, then it is highly 
recommended to hide them in the data model. The idea is to keep the data model as tidy 
as possible so you may hide some fields that fall into some of the preceding categories 
based on your use cases. 

Unused tables, on the other hand, are the tables with all their fields unused. 
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While this best practice suggests hiding the unused fields and unused tables, applying 
it can be a time-consuming process. In particular, finding out the fields that are not 
referenced anywhere within the model or are not being used in any visuals can be a 
laborious job if done manually. Luckily, some third-party tools can make our lives easier. 
For instance, we can use Power BI Documenter, which can not only find unused tables 
and fields but also hide all unused tables and fields in one click. 

The following screenshot shows how our Fields pane looks before and after hiding unused 
tables with Power BI Documenter:

Figure 9.29 – Before and after hiding unused tables using Power BI Documenter



408     Star Schema and Data Modeling Common Best Practices

The following screenshot shows what the Internet Sales table looks like before and 
after using Power BI Documenter to hide the unused fields:

Figure 9.30 – Before and after hiding unused tables using Power BI Documenter

To learn more about Power BI Documenter, visit www.datavizioner.com.

http://www.datavizioner.com
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Hiding key columns
The other best practice that helps us keep our data model tidy is to hide all key columns. 
The key columns are Primary Keys and their corresponding Foreign Keys. While 
keeping the key columns in the data model is crucial, we do not need them to be visible.

Hiding implicit measures
The other items we can hide in our data model are the implicit measures. We discussed the 
implicit and explicit measures in Chapter 8, Data Modeling Components, in the Measures 
section. Best practices suggest creating explicit measures for all implicit measures required 
by the business and hiding all the implicit measures in the data model. Hiding implicit 
measures reduces the confusion of which measure to use in the data visualizations for 
other content creators who are not necessarily familiar with the data model.

Hiding columns used in hierarchies when possible
When we create a hierarchy, it is better to hide the base columns from the report view. 
Having base columns in a table when the same column appears in a hierarchy is somewhat 
confusing. So avoid any confusion for the other content creators who are connecting to 
our data model (dataset).

Creating measure tables
Creating a measure table is a controversial topic in Power BI. Some experts suggest 
considering using this technique to keep the model even more organized, while others 
discourage using it. I think this technique is a powerful way to organize the data model; 
however, there are some side effects to be mindful of before deciding whether to use this 
technique or not. We will look at some considerations in the next section. For now, let's 
see what a measure table is. A measure table is not a data table in our data model. We only 
create them and use them as the home table for our measures. For instance, in our sample 
report, we can move all the measures from the Internet Sales table to a separate 
table. When a table holds the measures only (without any visible columns), Power BI 
detects the table as a measure table with a specific iconography ( ). The following steps 
explain how to create a measure table in Power BI:

1. Click the Enter Data button.

2. Leave Column1 as is with an empty value.

3. Name the table Internet Sales Metrics.
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4. Click Load:

Figure 9.31 – Entering data in Power BI Desktop

5. Right-click Column1 in the Internet Sales Metrics table. 

6. Click Hide:

Figure 9.32 – Hiding a column
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Now we have to move the measures from the Internet Sales table to the Internet 
Sales Metrics table. The following steps show how we can do that:

7. Click the Model view.

8. Right-click the Internet Sales table.

9. Click Select measures to select all measures within the Internet Sales table.

The following screenshot shows the preceding three steps:

Figure 9.33 – Selecting all measures from a table
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10. Drag the selected measures and drop them on the Internet Sales Metrics 
table, as shown in the following screenshot:

Figure 9.34 – Moving multiple measures from a table to another

11. Click the Report view.

12. Hide the Fields pane, then unhide it.

The following screenshot shows the preceding two steps:

Figure 9.35 – The measure table created in Power BI Desktop
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We now have a measure table keeping all the Internet Sales measures. When Power 
BI Desktop detects a measure table, it puts the measure table on top of the other tables 
within the Fields pane. We can create separate measure tables for different business 
domains so that we can have all relevant measures in the same place. This approach helps 
to make our model tidier and makes it easier for content creators to understand the 
model.

Considerations
While creating measure tables can help keep our data model tidy, some downfalls are 
associated with this approach. For instance, it does not make too much sense to have  
a table with an empty column in the model from a data modeling point of view. So if 
you do not see any issues with having a table in your model that is only used for holding 
your measures, this might not sound like a real issue. But there is one more real issue 
associated with the measure tables, which relates to the featured tables. As we discussed 
the concept of featured tables in Chapter 8, Data Modeling Components, in the Featured 
tables section, we can configure a table within our Power BI data model as a featured table. 
After we configure a featured table, the table's columns and measures are available for the 
Excel users across the organization. Therefore, when we move all the measures from a 
featured table to a measure table, then the measures will not be available to the Excel users 
anymore. So the key message here is to think about your use cases then decide whether 
the measure tables are suitable for your scenarios or not.

Using folders
Another method to keep our data model tidy is to create folders and put all relevant 
columns and measures into separate folders. Unlike creating measure tables, creating 
folders does not have any known side effects on the model. Therefore, we can create as 
many folders as required. We can create new folders or manage existing folders via the 
Model view within the Power BI Desktop. In this section, we discuss some tips and tricks 
for using folders more efficiently.
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Creating a folder in multiple tables in one go
There is a handy way to create folders more efficiently by creating a folder in multiple 
tables in a single attempt. This method can is handy be many cases, such as creating a 
folder in the home tables to keep all the measures, or selecting multiple columns and 
measures from multiple tables and placing them in a folder in multiple tables. The 
following steps create a folder to keep all measures in multiple home tables:

1. Switch to the Model view.

2. Select a table either from the Model view or from the Fields pane, then press the 
Crtl + A combination from your keyboard to select all tables.

3. Right-click a selected table.

4. Click Select measures from the context menu.

The following screenshot illustrates the preceding steps:

Figure 9.36 – Selecting all measures in the model

5. Type in a name in the Display folder (I entered Measures) and press Enter from 
the keyboard.

The following screenshot shows the Measures folder created in multiple tables 
containing all measures used by those tables:



Organizing the model     415

Figure 9.37 – Placing all selected measures in a folder within multiple tables

Placing a measure in multiple folders
In some cases, you might want to place a measure in multiple folders. A use case for this 
method is to make a measure more accessible for the contributors or support specialists. 
In our sample file, for instance, we want to have to show Sales LM and Sales MoM% 
measures in both the Measures folder and in a new Time Intelligence folder. The 
following steps show how to do so:

1. Select the Sales LM and Sales MoM% measures.

2. In the Display folder, add a semicolon after Measures, then type in the new folder 
name and press Enter from the keyboard.
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The following screenshot shows the preceding steps:

Figure 9.38 – Placing measures in multiple folders

Just to make it clear, the Display folder field in the preceding screenshot contains the 
folder names separated by a semicolon as follows:

Measures;Time Intelligence

Creating subfolders
In some cases, we want to create subfolders to make the folders even tidier. For instance, 
in our sample, we want to have a subfolder to keep our base measures. The following steps 
show how to create a subfolder nested in the root folder:

1. Select the desired measure(s).

2. Use a backslash (\) character to create a subfolder, then press Enter on the 
keyboard.
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The following screenshot shows the preceding steps:

Figure 9.39 – Creating subfolders

Reducing model size by disabling auto date/
time
When the data is loaded into the data model, Power BI automatically creates some Date 
tables to support calendar hierarchies for all columns in DateTime datatype. This feature 
is convenient, especially for beginners who do not know how to create a Date table or 
create and manage hierarchies. However, it can consume too much storage, which can 
potentially lead to severe performance issues. As mentioned earlier, the auto date/time 
feature forces Power BI Desktop to create Date tables for every single DateTime column 
within the model. The Date tables have the following columns:

• Date

• Year

• Quarter

• Month

• Day
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The last four columns are used to create date hierarchies for each DateTime column. 
The Date column in the created Date table starts from January 1 of the minimum year 
of the related column in our tables. It ends on December 31 of the maximum year of that 
column. It is a common practice in data warehousing to use 10/01/1900 for unknown 
dates in the past and 31/12/9999 for unknown dates in the future. So imagine what 
happens if we have only one column having only one of preceding unknown date values. 
So it is a best practice to disable this feature in Power BI Desktop. The following steps 
show how to disable auto date/time:

1. In Power BI Desktop, click the File menu.

2. Click Options and settings.

3. Click Options.

The following screenshot shows the preceding steps:

Figure 9.40 – Changing Power BI Desktop Options
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4. Click Data Load from the GLOBAL section.

5. Untick the Auto date/time for new files. This will disable this feature globally; 
therefore, when you start creating a new file, the Auto date/time feature is already 
disabled.

The following screenshot shows how to disable the Auto date/time feature globally:

Figure 9.41 – Disabling the Auto date/time feature globally

6. Click Data Load from the CURRENT FILE section.

7. Untick the Auto date/time. This will disable the Auto date/time feature only for the 
current file. So if we did not do the previous step, the Auto date/time feature is not 
disabled for new files.
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8. Click OK:

Figure 9.42 – Disabling the Auto date/time feature for the current file

Disabling the Auto date/time feature removes all the automatically created Date tables, 
which reduces the file size.
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Summary
In this chapter, we learned some common best practices for working with Star Schema 
and data modeling. We learned how to implement many-to-many relationships. We also 
learned how and when to use bidirectional relationships. Then we looked at disabled 
relationships and how we can programmatically enable them. We also learned about the 
config tables and how they can help us with our data visualization. We then discussed why 
and when we should avoid using calculated columns. Next, we looked at some techniques 
to organize the data model. Last but not least, we learned how we could reduce the model 
size by disabling the Auto date/time feature in Power BI Desktop. 

In the next chapter, Advanced Modeling Techniques, we will discuss some exciting data 
modeling techniques that can boost our Power BI model performance while creating 
complex models. See you there.





Section 4:  
Advanced Data 

Modeling

This section focuses on advanced data modeling techniques that you may not deal  
with on a daily basis but are extremely important to know about. Implementing  
parent-child hierarchies, dealing with different calculations in a hierarchy, using 
aggregations, different ways to handle many-to-many relationships, along with more 
advanced business requirements to be implemented in the data model are all covered 
in different chapters of this section. You need to have a deep understanding of the star 
schema and DAX. Like other parts of this book, the chapters of this section are fully 
hands-on with real-world scenarios.

This section comprises the following chapters:

Chapter 10, Advanced Data Modeling Techniques 

Chapter 11, Row-Level Security 

Chapter 12, Extra Options and Features Available for Data Modeling
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Advanced 

Data Modeling 
Techniques

In the previous chapter, we looked at some data modeling best practices, such as dealing 
with many-to-many relationships using bridge tables, dealing with inactive relationships, 
and how to programmatically enable them. We also learned how to use config tables, 
organize our data model, and reduce the model's size by disabling the Auto date/time 
feature in Power BI Desktop.

This chapter will discuss some advanced data modeling techniques that can help us deal 
with more complex scenarios more efficiently. Some techniques we'll discuss in this 
chapter only used to be available for the data models that were backed in a premium 
capacity. However, they are now available under the Power Pro licensing plan as well.  
In this chapter, we will cover the following topics:

• Using aggregations

• Incremental refresh

• Understanding parent-child hierarchies
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• Implementing roleplaying dimensions

• Using calculation groups

As this chapter's name implies, we will be covering more advanced technical topics here; 
therefore, we will avoid explaining less advanced steps.

Using aggregations
From a data analytics viewpoint, the concept of aggregation tables has been around  
for a long time. The concept was widely used in SQL Server Analysis Service  
Multi-Dimensional. The way aggregation tables work is simple: we aggregate the data 
at a particular grain and make it available in the data model. Already aggregating the 
data that's available in the model usually translates into better performance at runtime. 
However, the aggregation typically happens at a different level of granularity. Therefore, 
we change the granularity of the base table. Now, you may be wondering, so what if the 
business needs to drill down to a lower granular level of data? The answer is that we 
need to keep the base table available in the data model. We aggregate the base table at a 
different granular level in a new table. Then, we implement a control mechanism to detect 
the level of granularity that the user is at. If the data is available at the aggregated level, 
the calculation happens in the aggregated table. When the user drills down to the lower 
grain, the control mechanism runs the calculations in the base table. This approach is an 
intricate design from a data modeling perspective, but it works perfectly if we get it right. 

Implementing this aggregation is useful in almost all data models; it is even more 
valuable when one of our data sources is big data. For instance, we may have billions 
of rows hosted in Azure Synapse Analytics; then, it is utterly impossible to import all 
the data into the data model in Power BI Desktop. In those cases, using aggregation 
tables becomes inevitable. The good news is that there is a specific feature in Power BI 
Desktop that supports aggregation tables called Manage aggregations. When it comes to 
using the Manage aggregations feature, the data source of the base table must support 
DirectQuery mode.

Note
We discussed the various storage modes in Chapter 4, Getting Data from 
Various Sources, in the Dataset storage modes section.

Refer to the following link to find a list of data sources that support 
DirectQuery: https://docs.microsoft.com/en-us/power-
bi/connect-data/power-bi-data-sources?WT.mc_
id=?WT.mc_id=DP-MVP-5003466.

https://docs.microsoft.com/en-us/power-bi/connect-data/power-bi-data-sources?WT.mc_id=?WT.mc_id=DP-MVP-5003466.
https://docs.microsoft.com/en-us/power-bi/connect-data/power-bi-data-sources?WT.mc_id=?WT.mc_id=DP-MVP-5003466.
https://docs.microsoft.com/en-us/power-bi/connect-data/power-bi-data-sources?WT.mc_id=?WT.mc_id=DP-MVP-5003466.
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The Manage aggregations feature takes care of the complexities of switching the 
calculations between the aggregated table and the base table when the user drills down 
to more granular details. In the next few sections, we'll discuss two different ways of 
implementing aggregation tables. 

The first method is for implementing aggregation tables for the data sources that do 
not support DirectQuery mode, such as Excel files. Therefore, we need to implement 
the aggregation table and take care of the control mechanism to switch between the 
aggregated table and the base table when the user drills down to a higher grain of data. 

The second method uses the Manage aggregations feature when the connection to the 
data source supports DirectQuery mode.

Implementing aggregations for non-DirectQuery data 
sources
In many real-world scenarios, our data sources may not support DirectQuery mode. 
Therefore, we cannot use the Manage aggregations feature in Power BI Desktop. 
However, we can manually implement aggregations by going through the following 
process:

1. Summarizing the table at a different grain.

2. Creating relationships between the new summary table and the dimensions at the 
summary grain.

3. Creating the desired measures (note that the new measures work at the summary 
grain).

4. Creating another set of new measures that control the level of grain selected by  
the user.

5. Hiding the summary table to make it transparent from the users.

In this section, we will use the Chapter 10, Aggregations on 
Non-DirectQurey Data Sources.pbix sample file, which is sourcing data from 
the AdventureWorksDW2017.xlsx Excel file. 
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Implementing aggregation at the Date level
In our sample file, we want to create an aggregated table on top of the Internet 
Sales table. The Internet Sales table currently contains 60,398 rows. We need 
to summarize the Internet Sales table at the Date grain only. We'll name the new 
summary table Internet Sales Aggregated. 

Note
We discussed Summarization in Chapter 5, Common Data Preparation Steps, 
in the Group by section. Therefore, we will not explain how to summarize the 
Internet Sales table here.

Summarizing the Internet Sales table
To summarize the Internet Sales table at the Date granularity level, we must use 
the Group by functionality in Power Query Editor. We need to aggregate the following 
columns while using SUM as the aggregation operation:

• Order Quantity

• Sales

• Tax

• Freight Costs

These need to be grouped by the following key columns:

• OrderDateKey

• DueDateKey

• ShipDateKey
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The following screenshot shows the Group By step within Power Query Editor:

Figure 10.1 – Summarizing Internet Sales in Power Query Editor with the Group By functionality

Now that we've summarized the Internet Sales table at the Date level (the new 
Internet Sales Aggregated table), we can close and apply the changes within 
Power Query Editor to load the data into the data model. 
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Creating relationships
At this point, we've loaded the data into the data model. The Internet Sales 
Aggregated table only contains 1,124 rows, which is significantly fewer than the 
Internet Sales table (the base table). The following screenshot shows the Internet 
Sales Aggregated table after being loaded into the data model:

Figure 10.2 – The Internet Sales Aggregated table
 The next step is to create relationships between the new table and the Date table. The 

following screenshot shows the relationships that have been created:
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Figure 10.3 – Relationships between the Internet Sales Aggregated table and the Date table

The next step is to create a new measure to calculate the Sales amount.

Creating new measures in the summary table
Now, it is time to create a new measure within the Internet Sales Aggregated 
table. To keep this scenario simple, we'll create one new measure that calculates the 
summation of the Sales column from the Internet Sales Aggregated table. The 
DAX expression for this is as follows:

Sales Agg = SUM('Internet Sales Aggregated'[Sales])

The Sales Agg measure calculates the sales amount. Remember, the Internet 
Sales Aggregated table is derived from the Internet Sales table. Therefore, the 
Sales Agg measure uses the same calculation as the Internet Sales measure from 
the Internet Sales table. Here is the DAX expression of the Internet Sales 
measure: 

Internet Sales = SUM('Internet Sales'[SalesAmount])



432     Advanced Data Modeling Techniques

The main differences between the Sales Agg measure and the Internet Sales 
measure are as follows: 

• Sales Agg is calculating the sales amount over a small table (Internet Sales 
Aggregated), while Internet Sales is calculating the same thing but over a 
much larger table (Internet Sales), so the Sales Agg calculation could be 
faster than Internet Sales when many concurrent users are using the report.

The users can filter the Internet Sales values by Customer, Product, and Date, 
but they can only filter the Sales Agg values by Date.

Now that we've created the Sales Agg measure, we are ready for the next step in our 
design: creating a new control measure to detect the level of grain selected by the user.

Creating control measures in the base table
In this section, we will create a new control measure to detect the grain that's been 
selected by the user. When a user is in Date grain only, the control measure redirects to 
the Sales Agg measure (from the summary table). However, if the user selects a column 
from either the Product or Customer tables, then the control measure redirects to 
the Internet Sales measure (from the base table). We create the control measure in 
the base table, which in our example is the Internet Sales table. We will be creating 
the control measure in the base table as we will be hiding the summary table in the next 
step. We have a couple of DAX options when it comes to identifying the grain that's 
been selected by the user. We can use either the IF or SWITCH function to check certain 
conditions, along with one or a combination of the following DAX functions:

• ISFILTERED

• ISINSCOPE

• HASONEFILTER

• HASONEVALUE

The following DAX expression detects if the user has selected a column from either the 
Product table or the Customer table and redirects the calculation to the corresponding 
measure:

Internet Sales Total = 

    IF(

        OR(ISFILTERED('Product'), ISFILTERED('Customer'))

        , [Internet Sales]

        , [Sales Agg]

        )
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Hiding the summary table
The last piece of the puzzle is to hide the Internet Sales Aggregated table and 
the Internet Sales measure within the Internet Sales table to avoid confusion 
for other content creators. The following screenshot shows the model after hiding the 
Internet Sales Aggregated table and the Internet Sales measure from the 
Internet Sales table:

Figure 10.4 – The data model after hiding the Internet Sales Aggregated table  
and the Internet Sales measure
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Now that we have everything sorted, it is time to test the solution in the data visualization 
layer. We need to make sure that the Internet Sales measure and the Internet 
Sales Total measure always result in the same values. We also need to ensure that 
when the user selects any columns from either the Product table or the Customer 
table, the Internet Sales Total measure uses the base table (the Internet 
Sales table). In our example, we created a report page that shows the Internet 
Sales and Internet Sales Total measures side by side. The following screenshot 
shows the report page:

Figure 10.5 – Testing the aggregation in data visualization

As the preceding screenshot shows, there is a card visual at the top of the page. The card 
visual shows what table is used in the calculation within the table visual (in the middle of 
the report page). We used the following measure in the card visual:

Test Grain Selection Control = 

     IF(

        OR(ISFILTERED('Product'), ISFILTERED('Customer'))

        , "Internet Sales"

        , "Internet Sales Aggregated"

        ) 
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The preceding expression checks whether either the Product table or the Customer 
table have been filtered. If the result is TRUE, then the Internet Sales table is being 
used; otherwise, the Internet Sales Aggregated table is being sued.

The following screenshot shows the report page when the user selects a Product 
Category from the slicer on the left-hand side of the report:

Figure 10.6 – The test visuals after selecting a Product Category from the slicer

As the preceding screenshot shows, the aggregation is working correctly. 

So far, we've implemented a simple use case for implementing aggregations in Power BI 
Desktop. But there are many other use cases for aggregations. In the next section, we'll go 
one step further to elevate this scenario's complexity. 
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Implementing aggregation at the Year and Month level
This time, we would like to create another summary table that summarizes the 
Internet Sales table at the Year and Month granular levels and only based on the 
OrderDateKey column. We also want to include row counts of Internet Sales 
as an aggregated column. The steps for implementing this scenario are the same as in 
the previous scenario. The only difference is in the data preparation layer in terms of 
summarizing the Internet Sales data and changing the granularity of the data 
from Date to Year and Month. Let's have a closer look at the data preparation layer. 
To summarize the Internet Sales data at the Year and Month level, we need to 
aggregate the following columns (with the mentioned aggregation operation):

• SUM of Order Quantity

• SUM of Sales

• SUM of Tax

• SUM of Freight Costs

• Count of Internet Sales

Grouped By the following key column:

• OrderDateKey

The critical point to notice is that we need to modify OrderDateKey so that it's at the 
Year and Month level. However, OrderDateKey is a number value, not a date value. 
The other point is that we need to create a relationship between the new summary table 
and the Date table using OrderDateKey from the summary table and DateKey from 
the Date table. Therefore, OrderDateKey must remain a number to match the values of 
the DateKey column from the Date table. To overcome this challenge, we only need to 
use the following math:

New OrderDateKey = (CONVERT(Integer, ([OrderDateKey]/100)) * 
100) + 1

The preceding math converts 20130209 into 20130201. At this point, you may be 
thinking that New OrderDateKey is still at the day level. That is correct. But we 
are changing all the dates to the first day of the month, which means that when we 
aggregate the values by New OrderDateKey, we are indeed aggregating at the Year 
and Month level. So, we only need to replace the OrderDateKey values using the New 
OrderDateKey math. 
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Once we've removed all the unnecessary columns within Power Query Editor, we have to 
add a step to replace the values of OrderDateKey with the following expression:

Table.ReplaceValue(#"Removed Other Columns",each 
[OrderDateKey], each (Int64.From([OrderDateKey]/100) * 100) + 
1,Replacer.ReplaceValue,{"OrderDateKey"})

The following screenshot shows these Power Query steps:

Figure 10.7 – Replacing the OrderDateKey values

The next step is to summarize the results. Remember, we also need to add Count of 
Internet Sales as an aggregation. The following screenshot shows the Group By 
step resulting in our summary table:

Figure 10.8 – Summarizing the Internet Sales table at the Year and Month level
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We can now apply the changes within the Power Query Editor window, which adds 
Internet Sales Aggregated Year Month as a new table. Moving forward with 
our implementation, we have to create a relationship between the Internet Sales 
Aggregated Year Month table and the Date table. The following screenshot shows 
the relationship once it's been created:

Figure 10.9 – Creating a relationship between Internet Sales Aggregated Year Month and Date

Note
We set the relationship's Cardinality to Many to one and Cross-filter 
direction to Single. 

When we create the preceding relationship, Power BI automatically detects the 
relationship as a one-to-one relationship. Conceptually, this is correct. Each row of the 
Internet Sales Aggregated Year Month table is occurring on the first day  
of each month related to only one row in the Date table. However, we need to change  
the relationship's cardinality from one to one to many to one. This avoids filter 
propagation flowing from the Internet Sales Aggregated Year Month  
table to the Date table. 
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The next step is to create a new measure using the following DAX expression in the 
Internet Sales Aggregated Year Month table:

Sales Year Month = SUM('Internet Sales Aggregated Year 
Month'[Sales])

Now, we need to create a new control measure to detect the level of details the user 
selects, not only at the Product and Customer levels but also at the Date level in the 
Internet Sales table. The following DAX expression caters for this:

Internet Sales Agg = 

    IF(

        ISFILTERED('Product') || ISFILTERED('Customer') || 
ISFILTERED('Date'[Full Date])

        , [Internet Sales]

        , [Sales Year Month]

    )

Let's create a test measure that evaluates the IF() function in the preceding expression. 
The following DAX expression evaluates if either the Product and Customer tables  
or the Full Date column from the Date table are filtered, which results in "Internet 
Sales" (a text value); otherwise, the output is "Internet Sales Aggregated"  
(a text value). With the following test measure, we can get a better understanding of how 
the Internet Sales Agg measure works:

Internet Sales Agg Test = 

    IF(

        ISFILTERED('Product') || ISFILTERED('Customer') || 
ISFILTERED('Date'[Full Date])

        , "Internet Sales"

        , "Internet Sales Aggregated"

    )
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The last bit is to test the aggregation on a report page. The following screenshot shows 
the report page we created to test the aggregation results before the user selects any filters 
from the Product or Customer tables:

Figure 10.10 – Testing the aggregation before filtering by the Product or Customer tables

Note the value of Total for the Internet Sales Agg Test measure, which shows 
Internet Sales Aggregated. As the preceding screenshot shows, when we do not 
filter by Product or Customer, the Internet Sales Agg measure calculates the 
results for the Year and Month levels. But at the Date level, the Internet Sales 
measure calculates the values.

We can use this method as a performance optimization step, which mainly shows its 
values when many concurrent users use the same report. However, we have to be mindful 
of the following side effects:

• The summary tables will increase memory and storage consumption.

• The summary tables will also increase the data refresh time.

• The development time also increases as we need to create the summary table, create 
the relationships, and create the measures.

Now that we've implemented aggregations on top of non-DirectQuery data sources, it is 
time to look at the Manage aggregations feature.
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Using the Manage Aggregations feature
Managing aggregations is the most significant scalability feature and is also one of the 
most powerful data modeling features available within Power BI Desktop, since it unlocks 
the usage of Big Data in Power BI. As we all know, Power BI compresses and caches data 
into memory when the query connection mode is Import mode. Imagine a scenario 
where we have a reasonably large data source that contains as billions of rows of data 
stored in an Azure Synapse server. Our job is to create an enterprise-grade analytical 
solution in Power BI. We also know that Power BI has a storage limit, especially when we 
are on either the Free or Pro licensing tier. Even if we own a Premium capacity, we are 
still limited to the amount of dedicated memory available in our Premium capacity. Of 
course, with Power BI Premium Gen 2, this memory limitation would be less of a concern. 
But if we are not careful about our data modeling, then our data processing and memory 
consumption will quickly become a bottleneck issue. This is where using the Manage 
Aggregations feature becomes vital to our data model. As we explained in the previous 
sections, the Manage aggregations feature is only available for the base tables that source 
from a data source supporting DirectQuery mode. 

Note
In some Power BI resources, the base table is also referred to as the detail  
table. However, they are the same thing – the table that we are using to create  
a summary table. 

The summary table is also referred to as the aggregation table, aggregated table, 
or agg table.

The supporting DirectQuery mode is a vital point when it comes to data modeling. 
As we discussed previously in Chapter 4, Getting Data From Various Sources, in the 
Connection modes section, when a query is in Import mode, we cannot switch it to either 
DirectQuery mode or Dual mode. Therefore, we have to think about the necessity of 
managing aggregations at design time and before we start implementing the data model; 
otherwise, we will end up creating the data model from scratch, which is far from ideal. 
With that in mind, here is the process of managing aggregations in Power BI Desktop:

1. We connect to the data source.

2. We load all the necessary tables in DirectQuery mode:

• The data source may include the aggregation table already.

• If the summary table is not already in the data source, we can use either Power  
or DAX to create an aggregation table.
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3. We create relationships between tables.

4. We change the storage mode of the summary table to Import mode. Again, we  
are mindful that this is an irreversible action. We must also change the storage 
mode of all the dimensions with an active relationship with the summary table  
to Dual mode.

5. We configure Manage aggregation.

6. We test the aggregation to make sure our queries hit the aggregation.

In this section, we will use AdventureWorksDW2019 (SQL Server database).

Note
You can download the SQL Server backup file from Microsoft's website: 
https://docs.microsoft.com/en-us/sql/samples/
adventureworks-install-configure?view=sql-server-
ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466.

Let's implement the aggregations on top of FactInternetSales using the following 
columns and aggregations:

• FactInternetSales (Count Rows)

• SalesAmount (Sum)

• OrderQuantity (Sum)

• TaxAmt (Sum)

• Freight (Sum)

• ProductKey (Group by)

• Year (Group by)

• Month (Group by)

To create the aggregation table, we must use the following T-SQL scripts to create  
a database view:

CREATE VIEW vw_Sales_Agg AS

SELECT dp.ProductKey 

       , dd.CalendarYear 

       , dd.EnglishMonthName 

       , COUNT(1) Sales_Count

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
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       , SUM(fis.SalesAmount)   AS Sales_Sum 

       , SUM(fis.OrderQuantity) AS OrderQty_Sum 

       , SUM(fis.TaxAmt)        AS Tax_Sum 

       , SUM(fis.Freight)       AS Freight_Sum 

FROM   FactInternetSales fis

       LEFT JOIN DimDate dd

              ON dd.DateKey = fis.OrderDateKey 

       LEFT JOIN DimProduct dp

              ON fis.ProductKey = dp.ProductKey 

GROUP BY dp.ProductKey 

       , dd.CalendarYear 

       , dd.EnglishMonthName

We can then use the preceding database view in Power BI Desktop.

Managing aggregations in Power BI Desktop for data sources that 
support DirectQuery and big data
Now that we have the aggregation table handy, it is time to use the Manage aggregations 
feature. The following steps show how to do so:

1. Use the SQL Server connection to connect to your instance of SQL Server:

Figure 10.11 – Connecting to a SQL Server database in DirectQuery mode
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2. Load the following tables in DirectQuery mode:

• DimDate

• DimCustomer

• DimProduct

• FactInternetSales

• vw_Sales_Agg:

Figure 10.12 – Tables loaded in DirectQuery mode

Note
We could create the aggregation table in Power Query. However, for this 
sample, we use the vw_Sales_Agg database view.

3. Rename vw_Sales_Agg to Sales_Agg:
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Figure 10.13 – Renaming vw_Sales_Agg to Sales_Agg

4. Create relationships between the tables:

Figure 10.14 – Creating relationships in the Model view
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Note
We need to create a relationship between the aggregation table and all the 
necessary dimensions to resolve the queries in the aggregation table. In our 
example, we have to create the relationship between the Sales_Agg and 
DimProduct tables via the ProductKey column.

5. Change the storage mode of the aggregation table and all its related dimensions. 
Follow these rules:

• Change the storage mode of the Sales_Agg table to Import mode. You will get a 
warning message, stating that the storage mode of the tables related to Sales_Agg 
must switch to Dual mode. We can tick the Set the affected tables to dual option 
here. Otherwise, we can set the storage mode of the related tables later.

• Change the storage mode of DimProduct to Dual mode:

Figure 10.15 – Changing the storage mode of the aggregation table to Import and  
the related tables to Dual
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We have changed the aggregation table's storage mode to Import mode because we want 
the queries that are hitting the aggregation table to run quickly. This is only possible when 
we import the data and make it available to the xVelocity engine so that it can resolve the 
queries internally. If we put a measure from FactInternetSale (the detail table) and 
EnglishProductName from the DimProduct table, then the FactInternetSale 
table is in Import mode, while the DimProduct table is in DirectQuery mode. The 
engine has to resolve a part of the query internally when it hits the aggregation table. The 
other part, which is the DirectQuery, must translate into the Native Query of the source 
system. For that reason, we must change the storage mode of the DimProduct table to 
Dual mode. Let's continue with the aggregation's configuration:

6. Right-click the Sales_Agg table and click Manage aggregations:

Figure 10.16 – Manage aggregations on the Sales_Agg table

7. In the Manage aggregations window, do the following:

• Step a – Make sure that the Sales_Agg table is selected as Aggregation table.

• Step b – Leave Precedence set to 0.

• Step c – Set Summarization for the Sales_Agg columns. We deliberately named 
the columns with their summarization prefix, which will come in handy here.
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• Step d – Click Apply all:

Figure 10.17 – Manage aggregations

Notes
We do not need to set Summarization of ProductKey to Group by. 
There is already a relationship between the DimProduct and Sales_Agg 
tables.

After applying the aggregation, the Sales_Agg table is hidden.

8. Now, we must create the following measure in the detail table 
(FactInternetSales):

Total Internet Sales = SUM(FactInternetSales[SalesAmount])
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So far, we've configured the aggregation on top of FactInternetSales. We 
also created a new measure. We need to test the aggregation and make sure that the 
aggregation table gets hit when the queries are at the Product, Year, or Month levels. 

Testing the aggregation
At this stage, we have to test the aggregation and make sure it is getting hit. We can use 
SQL Server Profiler connected to our Power BI Desktop model to monitor the model. 
SQL Server Profiler is a part of the SQL Server Management Studio (SSMS) installation 
package. 

Read More about SQL Server Profiler
https://docs.microsoft.com/en-us/sql/tools/sql-
server-profiler/sql-server-profiler?view=sql-
server-ver15&WT.mc_id=5003466.

We have the following two options in the way we use SQL Server Profiler:

• We can register SQL Server Profiler as an external tool. Here, we can open SQL 
Server Profiler directly from Power BI Desktop from the External Tools tab. With 
this method, SQL Server Profiler automatically connects to our Power BI data 
model via the Power BI Diagnostic Port. 

Read More About How to Register SQL Server Profiler in Power BI:
https://www.biinsight.com/quick-tips-registering-
sql-server-profiler-as-an-external-tool/.

• We can open SQL Server Profiler and manually connect to our Power BI data 
model through the Power BI Desktop Diagnostic Port. To do so, we must find 
the Diagnostic Port number first, then connect to the data model using the port 
number.

Learn More About the Different Ways to Find the Power BI Desktop 
Diagnostic Port: 
https://www.biinsight.com/four-different-ways-to-
find-your-power-bi-desktop-local-port-number/.

https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15&WT.mc_id=5003466
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15&WT.mc_id=5003466
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15&WT.mc_id=5003466
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We use the first option as it is simpler than the second option. We have to trace the 
following events within the SQL Server Profiler:

If we're using SSMS v17.9 (or later), then we must select the following events:

• Query Processing\Aggregate Table Rewrite Query

• Query Processing\Direct Query Begin

• Query Processing\Vertipaq SE Query Begin

For the older versions of SSMS, we must select the following events:

• Queries Events\Query Begin

• Query Processing\DirectQuery Begin

• Query Processing\Vertipaq SE Query Begin

In this section, we'll discuss the first option, as follows:

1. Click SQL Server Profiler from the External Tools tab of the ribbon to open the 
Profiler, which automatically connects to the data model via Diagnostic Port:

 

Figure 10.18 – Running SQL Server Profiler from External Tools

2. From the Trace Properties window in SQL Server Profiler, click the Events 
Selection tab.

3. Select the events we mentioned earlier under the Query Processing section.

4. Click Run, as shown in the following screenshot:
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Figure 10.19 – Selecting events from Trace Properties in SQL Server Profiler

5. Go back to Power BI Desktop, put a Matrix visual on the report page, and put the 
Total Internet Sales measure into Values:

Figure 10.20 – Adding Total Internet Sales to a Matrix visual
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6. Go back to SQL Server Profiler and click the Aggregate Table Rewrite 
Query event.

7. Check the output. If the aggregation table got hit, we will see 
"matchingResult": "matchFound" in the output results. Another indication 
that the query hit the aggregation table is that the DirectQuery Begin event 
does not show up:

 

Figure 10.21 – Using SQL Server Profiler to check if the aggregation table gets hit

8. Go back to Power BI Desktop and add EnglishProductName from 
DimProduct to the Rows of the Matrix visual. Suppose you go back to SQL Server 
Profiler and click the Aggregate Table Rewrite Query event. In that case, 
you will see that the aggregation table got hit again. 

The following image shows both the Power BI Desktop and SQL Server Profiler windows 
side by side:
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Figure 10.22 –The Sales_Agg table gets hit again after adding the  
EnglishProductName column from DimProduct

9. Add the CalendarYear and EnglishMonthName columns from the DimDate 
table to the Columns of the Matrix visual and check the Profiler to ensure it gets 
hit. Note that in the Matrix visual, we must drill down from CalendarYear to the 
EnglishMonthName level to get the month level:

 

Figure 10.23 – The Sales_Agg table gets hit after adding the CalendarYear and  
EnglishMonthName columns

Now, let's take this one step further and make a simple change to our model and see if it 
affects the aggregation hit. 
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10. In the Matrix visual, drill up to the CalendarYear level. Then, in DimDate,  
set Sort By for the EnglishMonthName column to MonthNumberOfYear. 
From the Matrix, drill down to the EnglishMonthName level. Now, check the 
Profiler to see if Sales_Agg gets hit again. As the following image shows, this 
time, the result is "matchingResult": "attemptFailed", which means  
that Sales_Agg did not get hit:

Figure 10.24 – The Sales_Agg table did not hit after sorting EnglishMonthName by 
MonthNumberOfYear

Another indication that Sales_Agg did not get hit is the appearance of the DirectQuery 
Begin event.

To fix this issue, we must go through the following steps: 

1. Add the MonthNumberOfYear column to Sales_Agg in the SQL view.

2. Refresh the Sales_Agg table from the Model view.

3. Configure manage aggregation to Group by the MonthNumberOfYear column.
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We leave this part to you.

Important Notes About Aggregations
The detail table (base table) must be in DirectQuery mode.

Precedence in the Manage aggregations window prioritizes the aggregation 
hits when we have more than one aggregation table. The bigger the Precedence 
number, the higher the priority. For example, if we have another aggregation 
table that we would like to get hit before Sales_Agg, we must set a larger 
Precedence number for that aggregation table. The xVelocity engine tries to 
solve the underlying aggregation queries based on their Precedence value.

The data types of the aggregation columns from the aggregation table and the 
corresponding columns from the detail table must be the same; otherwise, we 
cannot complete the Manage aggregations.

We cannot chain aggregations for three or more tables. For example, we cannot 
create aggregations when Table X is the aggregation table for Table Y, 
and when Table Y is the aggregation table for Table Z.

While configuring the Manage aggregations window, we should set 
Summarization for each aggregation column. Use the Count table rows for 
the aggregations showing the count rows of the detail table.

Be mindful that after applying the aggregations, the aggregated table gets 
hidden by default.

Always create measures in the detail table, not in the aggregation table. The 
aggregation table is meant to be hidden from the end user.

We do not need to Group By the aggregation columns from a table with an 
active relationship with the aggregation table.

The aggregation for inactive relationships is not supported, even if we use the 
USERELATIONSHIP() function to activate the relationship.

Incremental refresh
Incremental refresh was available only in Premium capacities. However, from February 
2020 onward, it is also supported in the Professional licensing tier. Incremental refresh 
refers to incremental data loading, which has been around for a long time. Let's see what 
incremental refresh (or incremental data loading) is. 
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From a technical standpoint in data movement, there are always two options when we 
transfer data from location A to location B:

• Truncation and load: We transfer the data as a whole from location A to location B. 
If location B contains some data already, we truncate location B entirely and reload 
the entire data from location A to B.

• Incremental load: We transfer the data as a whole from location A to location B just 
once for the first time. The next time, we only load the data changes from A to B.  
In this approach, we never truncate B. Instead, we only transfer the data that exists 
in A but not in B.

When we refresh the data in Power BI, if we have not configured an incremental refresh, 
we use the first approach, which is truncation and load. Needless to say that in Power 
BI, any of the preceding data refresh methods only apply to tables with Import or Dual 
storage modes. 

Once we've successfully configured the incremental refresh policies in Power BI, we 
always have two ranges of data: the historical range and the incremental range. The 
historical range includes all the data that has been processed in the past, while the 
incremental range is the current range of data to process. Incremental refresh in Power BI 
always looks for data changes in the incremental range, not the historical range. Therefore, 
changes in historical data will not be noticed. 

Note
Incremental refresh detects updated data as deleting the old data and inserting 
new data.

Configuring incremental refresh is beneficial for large tables with millions of rows. 

The following are some benefits of incremental refresh in Power BI:

• The data will refresh much faster because we only transfer the changes, not the 
entire data.

• The data refresh process is less resource-intensive than refreshing the entire data  
all the time.

• The data refresh process is less expensive and more maintainable than the 
non-incremental refreshes over large tables.
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Incremental refresh is inevitable when we're dealing with massive datasets with billions of 
rows that do not fit into our data model in Power BI Desktop. Remember, Power BI is an 
in-memory data processing platform; therefore, it is improbable that our local machine 
can handle importing billions of rows into memory.

Now that we understand what incremental refresh is, let's see how it works in Power BI.

Configuring incremental refresh in Power BI Desktop
We always configure incremental refresh in Power BI Desktop. Once we've published 
the model to Power BI Service, the first data refresh takes longer. We transfer all the data 
from the data source(s) to Power BI Service for the first time. All future data refreshes 
will be incremental. The way incremental refresh works in Power BI Desktop is simple. 
First, we require to define two date or date/time parameters in Power Query Editor, 
RangeStart and RangeEnd, which are reserved for defining incremental refresh 
policies. 

Note
Power Query is case sensitive, so the names of the parameters must be 
RangeStart and RangeEnd. 

The next step is to filter the data in large tables by filtering a date or date/time column 
using the RangeStart and RangeEnd parameters, when the value of the date/time 
column is between RangeStart and RangeEnd. 

Note
The date or date/time values must have an equal to (=) sign either on 
RangeStart or RangeEnd, not both. 

The filter on the date or date/time column will be used to partition the data 
into ranges. With the preceding conditions in mind, let's implement incremental 
refresh. In this section, we will be using the Chapter 10, Incremental 
Refresh.pbix sample file, which sources the data from a restored backup of the 
AdventureWorksDW2019 SQL Server database. 

Note
You can download the SQL Server backup file from here:  
https://docs.microsoft.com/en-us/sql/samples/
adventureworks-install-configure?view=sql-server-
ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466.

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms&WT.mc_id=?WT.mc_id=DP-MVP-5003466
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Here is our scenario for an incremental refresh: we would like to have a refresh policy 
that stores 10 years of data plus the data up to the current date, and then incrementally 
refreshes 1 months' worth of data. Follow these steps to implement the preceding scenario:

1. In Power Query Editor, get data from the FactInternetSales table from 
AdventureWorksDW2019 from SQL Server and rename it Internet Sales:

Figure 10.25 – Getting data from the source

2. Define the RangeStart and RangeEnd parameters with the Date/Time 
type. As we mentioned earlier, RangeStart and RangeEnd are reserved for 
configuring incremental refresh. So, the parameter names must match the preceding 
names. Set Current Value of the parameters as follows:

• Current Value of RangeStart: 1/12/2010 12:00:00 AM
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• Current Value of RangeEnd: 31/12/2010 12:00:00 AM:

Note
Set a Current Value for the parameters that work for your scenario. 
Just keep in mind that these values are only useful at development time as the 
Internet Sales table will only include the values between Current 
Value of RangeStart and RangeEnd after defining the filter in the next 
steps. In our example, Current Value of RangeStart is the first day of 
the month for our table's first transaction. The first transaction in Internet 
Sales for the OrderDate column is on 29/12/2010. Therefore, 
Current Value of the RangeStart parameter is 1/12/2010. 
Current Value of RangeEnd in our example is 31/12/2010.

Figure 10.26 – Defining the RangeStart and RangeEnd parameters
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3. Filter the OrderDate column, as shown in the following screenshot:

Figure 27 – Filtering the OrderDate column by the RangeStart and RangeEnd parameters

4. Click the Close & Apply button to import the data into the data model:

Figure 10.28 – Appling changes and loading data into the data model
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5. Right-click the Internet Sales table and click Incremental refresh. The 
Incremental refresh option is available in the context menu of the Report view, 
Data view, or Model view:

Figure 10.29 – Selecting Incremental refresh from the context menu

6. In the Incremental refresh window, do the following:

a.  Toggle on Incremental refresh

b.  Set the Store rows where column "OrderDate" is in the last: setting to 10 
Years

c.  Set the Refresh rows where column "OrderDate" is in the last: setting to  
1 Month

d.  Leave the Detect data changes and Only refresh complete month options 
unticked
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e. Click Apply all:

Figure 10.30 – Configuring the Incremental refresh window

Note
In many data integration and data warehousing processes, some auditing 
columns are added to the tables that collect some useful metadata, such 
as Last Modified At, Last Modified By, Activity, Is 
Processed, and so on. If you have a Date/Time column indicating 
the data changes (such as Last Modified At), the Detect data 
changes option would be helpful. We do not have any auditing columns in 
our data source; therefore, we will leave it unticked.

The Only refresh complete month option depends on the period we selected 
in the Refresh rows where column "OrderDate" is in the last: setting (item C 
in the preceding screenshot). With this option, we can force the incremental 
refresh to happen only for the entire period. In our scenario, this option is not 
useful; hence, we have left it unticked.

7. Click the Publish button to publish the data model to Power BI Service. Here, select 
the desired workspace and click Select, as shown in the following screenshot:
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Figure 10.31 – Publishing the report to Power BI Service

So far, we've configured the incremental refresh and published the data model to Power 
BI Service. At this point, a Power BI administrator should take over this process to 
complete the Schedule refresh, which they do by setting up an On-premises Data 
Gateway, passing sufficient credentials, and more. These settings are outside the scope 
of this book, so we leave them to you. So, let's assume the Power BI administrators have 
completed the settings in Power BI Service. You may now be wondering how we can test 
that the incremental refresh is working. In the next section, we'll explain how to test the 
incremental refresh.

Testing the incremental refresh
At the time of writing this book, we must have either a Premium or an Embedded capacity 
to be able to connect the desired workspace in Power BI Service. You must use some 
applications such as SQL Server Management Studio (SSMS) or DAX Studio to see the 
partitions we created for incremental data refresh.

Note
If you do not have a Premium or Embedded capacity, you can test them for free 
for a trial period. You can learn more about how to do that here:  
https://www.biinsight.com/what-does-xmla-
endpoints-mean-for-power-bi-and-how-to-test-it-
for-free/.

https://www.biinsight.com/what-does-xmla-endpoints-mean-for-power-bi-and-how-to-test-it-for-free/
https://www.biinsight.com/what-does-xmla-endpoints-mean-for-power-bi-and-how-to-test-it-for-free/
https://www.biinsight.com/what-does-xmla-endpoints-mean-for-power-bi-and-how-to-test-it-for-free/
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If you already have either a Premium or an Embedded capacity, then perform the 
following steps to connect to a Premium Workspace:

1. In Power BI Service, navigate to the desired Workspace, backed by a Premium 
capacity, that contains a dataset with incremental refresh.

2. Click Settings.

3. Click the Premium tab.

4. Copy the Workspace Connection URL:

Figure 10.32 – Getting Workspace Connection from Power BI Service

5. Open SSMS and in the Connect to Server window, do the following:

a.  Select Analysis Services as Server type.

b.  Paste the Workspace Connection link into the Server name box.

c.  Select Azure Active Directory – Universal with MFA (if you have 
MFA enabled in your tenant) for Authentication.

d.  Type in your User name.
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e. Click Connect:

Figure 10.33 – Connecting to a Power BI Premium Workspace from SSMS

6. We can now see all the datasets contained in the Workspace under Databases 
within the Object Explorer pane. Expand Databases, expand the dataset, and then 
expand Tables.

7. Right-click the Internet Sales table.

8. Click Partitions….
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9. Now, you can view all the partitions that were created by the incremental refresh 
process, as shown in the following screenshot:

Figure 10.34 – Navigating to a table's partitions from SSMS

As you can see, you can see or modify the created partitions directly from SSMS and save 
the changes back to Power BI Service. This is made possible by the XMLA endpoint read/
write capability, which is available in the Power BI Premium and Embedded capacities.

You can read more about Dataset connectivity with the XMLA endpoint here:  
https://docs.microsoft.com/en-us/power-bi/admin/service-
premium-connect-tools?WT.mc_id=?WT.mc_id=DP-MVP-5003466.

Understanding Parent-Child hierarchies
The concept of a Parent-Child hierarchy is commonly used in relational data modeling. 
We have a Parent-Child hierarchy when the values of two columns in a table represent 
hierarchical levels in the data. Parents have children; their children have children too, 
which creates a hierarchical graph. Let's continue with an example to understand Parent-
Child hierarchies and implement them in relational data modeling. Then, we'll look at 
the Parent-Child design in Power BI. The following diagram shows a typical Parent-Child 
graph. Each node of the graph contains an ID and the person's Name:

https://docs.microsoft.com/en-us/power-bi/admin/service-premium-connect-tools?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/power-bi/admin/service-premium-connect-tools?WT.mc_id=?WT.mc_id=DP-MVP-5003466
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Figure 10.35 – A Parent-Child graph

We can represent the preceding graph in a data table, as shown in the following 
screenshot:

Figure 10.36 – Parent-Child graph representation in a data table

We can quickly discover that there is a one-to-many relationship between the ID  
and ParentID columns. In generic relational data modeling, we usually create  
a relationship between the ID and ParentID columns. The Parent-Child table  
would be a self-referencing table, as the following screenshot:

Figure 10.37 – The Parent-Child table is a self-referencing table
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So far, we know how to represent a Parent-Child graph in relational data modeling. We 
also know that data modeling in Power BI is relational. But unfortunately, Power BI 
does not support self-referencing tables, in order to avoid ambiguity in the data model. 
However, the good news is that there is a set of DAX functions specifically designed to 
implement Parent-Child hierarchies in Power BI. Before jumping to their implementation, 
let's take a moment to understand the implementation process:

• First, we must identify the depth of the hierarchy. The following diagram shows that 
our example has four levels, so the depth is 4. The nodes at level 4 are leaves of the 
hierarchy, so William and Melanie are leaves:

Figure 10.38 – Hierarchy depth

• Then, we must create calculated columns for each level of the hierarchy.

• Finally, we must create a hierarchy using the calculated levels.

As you can see, the process is quite simple. Now, let's implement a Parent-Child hierarchy.

Identifying the depth of the hierarchy
To identify the depth of a Parent-Child hierarchy, we can use the PATH(ID, 
ParentID) function. The PATH() function returns a pipe (|) delimited string starting 
from the parent and ending with the current child. We need to create a new calculated 
column with the following DAX expression:

Path = PATH('Parent Child'[ID], 'Parent Child'[ParentID])
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The output of the preceding expression provides the path of our hierarchy, as shown in the 
following screenshot:

Figure 10.39 – Creating a new calculated column containing the hierarchy path

Considerations in Using the PATH() Function
ID and ParentID must have the same data type of either integer or 
text.

The values of the ParentID column must exist in the ID column. The 
PATH() function cannot find a parent if the child level does not exist.

If ParentID is null, then that node is the root of the graph.

Each ID (child level) can have one and only one ParentID; otherwise, the 
PATH() function will throw an error.

If ID is BLANK(), then PATH() returns BLANK().

Now that we have the values of the Path column, we can quickly identify the depth of the 
hierarchy using the PATHLENGTH(PathColumn) function. We need to create another 
calculated function using the following DAX expression:

Path Length = PATHLENGTH('Parent Child'[Path])
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The following screenshot shows the output of running the preceding expression:

Figure 10.40 – Calculating Path Length

Now that we've calculated Path Length, we know that the depth value of the 
hierarchy is 4. Therefore, we need to create four new calculated columns – one column  
for each hierarchy level.

Creating hierarchy levels
So far, we've identified the depth of the hierarchy. To implement a Parent-Child hierarchy, 
in our example, we know that the hierarchy's depth is 4, so we need to create four 
calculated columns. We can identify these hierarchy levels using the PATHITEM(Path, 
Path Length, Datatype) function, which returns the item for the specified Path 
Length within the Path column. In other words, the PATHITEM() function returns the 
values of each specified hierarchy level. Datatype is an optional operand that defines the 
data type of the output results, which is either INTEGER or TEXT. The default Datatype 
is TEXT. Let's take a moment to understand how the PATHITEM() function works. For 
instance, we can read the PATHITEM('Parent Child'[Path], 2, INTEGER) 
expression as "Return the integer item of Path when the hierarchy level is 2." The 
following screenshot shows the results of running the preceding expression:
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Figure 10.41 – The results of running the PATHITEM('Parent Child'[Path], 2, INTEGER) expression

As you can see, PATHITEM() returns the IDs of the specified level. But ID is not what 
we are after. We need to return the corresponding value of the Name column. To get the 
corresponding Name, we can use the LOOKUPVALUE(Returning Column, Lookup 
Column, Lookup Value) function. For instance, the following expression returns the 
values from the Name column that correspond to the values from the ID column where 
the hierarchy level is 2:

Level 2 Name = 

    LOOKUPVALUE(

        'Parent Child'[Name]

        , 'Parent Child'[ID]

        , PATHITEM('Parent Child'[Path], 2, INTEGER)

    ) 

Running the preceding expression results in the following output:

Figure 10.42 – The results of running the Level 2 Name expression
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As you can see, the expression returns nothing (it's blank) for the first value. When we 
have blank values in a hierarchy, we call it a ragged hierarchy. Ragged hierarchies can 
cause confusion in the visualization layer as we get BLANK() for every hierarchy level. 
One way to manage ragged hierarchies is to add a filter to avoid BLANK() values. The 
other way is to manage ragged hierarchies in our DAX expressions. We only need to 
check the value of the Path Length column. If it is bigger than or equal to the specified 
hierarchy level we are looking at, then we return the corresponding value of the Name 
column; otherwise, we return the value of the previous level's Name. Obviously, for the 
first level of the hierarchy, we do not have null values. Hence, we do not need to check 
Path Length. So, we must create four new calculated columns using the following 
expressions.

The following expression returns the values of the Name column for level 1 of the 
hierarchy:

Level 1 Name = 

    LOOKUPVALUE(

        'Parent Child'[Name]

        , 'Parent Child'[ID]

        , PATHITEM('Parent Child'[Path], 1, INTEGER)

        ) 

The following expression returns the values of the Name column for level 2 of the 
hierarchy:

Level 2 Name = 

    IF(

        'Parent Child'[Path Length] >=2

        , LOOKUPVALUE(

            'Parent Child'[Name]

            , 'Parent Child'[ID]

            , PATHITEM('Parent Child'[Path], 2, INTEGER)

        ) //End LOOKUPVALUE

        , 'Parent Child'[Level 1 Name]

    ) // End IF
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The following expression returns the values of the Name column for level 3 of the 
hierarchy:

Level 3 Name = 

    IF(

        'Parent Child'[Path Length] >=3

        , LOOKUPVALUE(

            'Parent Child'[Name]

            , 'Parent Child'[ID]

            , PATHITEM('Parent Child'[Path], 3, INTEGER)

        ) //End LOOKUPVALUE

        , 'Parent Child'[Level 2 Name]

    ) // End IF

The following expression returns the values of the Name column for level 4 of the 
hierarchy:

Level 4 Name = 

    IF(

        'Parent Child'[Path Length] >=4

        , LOOKUPVALUE(

            'Parent Child'[Name]

            , 'Parent Child'[ID]

            , PATHITEM('Parent Child'[Path], 4, INTEGER)

        ) //End LOOKUPVALUE

        , 'Parent Child'[Level 3 Name]

    ) // End IF
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The following screenshot shows the results of running the preceding expressions. Note 
that we removed the Level 1 ID and Level 2 ID columns as they were redundant:

Figure 10.43 – Four new calculated columns created returning the hierarchy levels

At this point, we have all the hierarchy levels. Now, we can create a hierarchy using these 
four levels. The following screenshot shows the new hierarchy and a visual representation 
of the hierarchy in a Slicer:

Figure 10.44 – Parent-Child hierarchy
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In this section, we discussed how to implement Parent-Child hierarchies. The example 
we used in this section was a straightforward one, but the principles remain the same. 
You can use the techniques we discussed in this section to overcome real-world scenarios 
such as Employee hierarchies, Organizational Charts, and so on. In the next section, we'll 
discuss roleplaying dimensions and learn how to implement them in Power BI.

Implementing roleplaying dimensions
The roleplaying dimension is one of the most common scenarios we face in data 
modeling. The term was inherited from multidimensional modeling within the SQL 
Server Analysis Services Multidimensional. Before jumping to the implementation part, 
let's take a moment and understand what the roleplaying dimension is. When we create 
multiple relationships between a fact table and a dimension for logically distinctive roles, 
we use the concept of a roleplaying dimension. The most popular roleplaying dimensions 
are the Date and Time dimensions. For instance, we may have multiple dates in a 
fact table such as Order Date, Due Date, and Ship Date, which participate in 
different relationships with the Date dimension. Each date represents a different role 
in our analysis. In other words, we can analyze the data using the Date dimension for 
different purposes. For instance, we can calculate Sales Amount by Order Date, 
which results in different values from the values; that is, either Sales Amount by Due 
Date or Sales Amount by Ship Date. But there is a small problem: the xVelocity 
engine does not support multiple active relationships at the same time. However, we 
can programmatically enable an inactive relationship using the USERELATIONSHIP() 
function in DAX, which activates the relationship for the duration of the calculation. We 
can use the USERELATIONSHIP() function within the CALCULATE() function for this.
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Now that we understand what the roleplaying dimension is, let's implement it in  
a scenario using the AdventureWorksDW2017.xlsx sample file:

1. Open Power BI Desktop, connect to the AdventureWorksDW2017.xlsx file, 
and get data from the Reseller_Sales and Dates tables:

Figure 10.45 – Getting data from the Reseller_Sales and Dates tables

2. Create the following relationships between the Reseller_Sales and Dates 
tables. Keep the first relationship active:

3. Reseller_Sales (OrderDateKey) => Dates (DateKey) 

4. Reseller_Sales (DueDateKey) => Dates (DateKey)

5. Reseller_Sales (ShipDateKey) => Dates (DateKey):

Figure 10.46 – Creating relationships between Reseller_Sales and Dates
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We now need to create new measures, one for each role, and name the measures 
appropriately so they resemble the roles. 

Note
Keep in mind that the active relationship between the two tables will remain 
the primary relationship. Therefore, all the measures that calculate values 
on top of the Reseller_Sales and Dates tables will use the active 
relationship. So, it is essential to make the relationship that makes the most 
sense to the business active. In our scenario, Order Date is the most 
important date for the business. Therefore, we will keep the Reseller_
Sales (OrderDateKey) => Dates (DateKey) relationship active. 

We can create the Reseller Sales by Order Date measure using the following 
DAX expression:

Reseller Sales by Order Date = SUM(Reseller_Sales[SalesAmount])

We can create the Reseller Sales by Due Date measure using the following  
DAX expression:

Reseller Sales by Due Date = 

    CALCULATE([Reseller Sales by Order Date]

        , USERELATIONSHIP(Dates[DateKey], Reseller_
Sales[DueDateKey])

    )

We can create the Reseller Sales by Ship Date measure using the following 
DAX expression:

Reseller Sales by Ship Date = 

    CALCULATE([Reseller Sales by Order Date]

        , USERELATIONSHIP(Dates[DateKey], Reseller_
Sales[ShipDateKey])

    )

As you can see, we did not use the USERELATIONSHIP() function in the Reseller 
Sales by Order Date measure as the active relationship between the Reseller_
Sales and Dates tables is Reseller_Sales (OrderDateKey) => Dates 
(DateKey).
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Now, we can use the preceding measures in our data visualizations. The following 
screenshot shows that all the measures that were created to support roleplaying 
dimensions are used side by side in a matrix:

Figure 10.47 – Visualizing roleplaying dimensions

If you are coming from a SQL Server Multidimensional background, you may be thinking 
of creating multiple Date tables. While that is another approach to implementing 
roleplaying dimensions, we do not recommend going down that path. The following are 
some reasons against creating multiple Date tables to handle roleplaying dimensions:

• Having multiple Date tables in our model can confuse other content creators, even 
if we have only two Date tables.

• This approach unnecessarily increases data model size and memory consumption.

• This approach is tough to maintain. We have seen some businesses that have more 
than 10 roles; have 10 Date tables to handle roleplaying dimensions does not sound 
right.
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Using calculation groups
Creating calculation groups is one of the most useful features for Power BI data modelers 
and developers. It reduces the number of measures you have to create. Calculation groups 
address the fact that we have to create many measures in larger and more complex data 
models that are somewhat redundant. Creating those measures takes a lot of development 
time. For instance, in a Sales data model, we can have Sales Amount as a base measure. 
In real-world scenarios, we usually have to create many time intelligence measures on 
top of the Sales Amount measure, such as Sales Amount YTD, Sales Amount QTD, Sales 
Amount MTD, Sales Amount LYTD, Sales Amount LQTD, Sales Amount LMTD, and so 
on. We have seen models with more than 20 time intelligence measures created on top of 
a single measure. In real-world scenarios, we have far more base measures and a business 
that requires all those 20 time intelligence measures for every single base measure. You 
can imagine how time-consuming it is to develop all those measures. We only need to 
create the referencing measures with calculation groups once. Then, we can use them with 
any base measures. In other words, the measures are now reusable. Calculation groups 
only used to be available in SQL Server Analysis Services Tabular 2019, Azure Analysis 
Service, and Power BI Premium. But it is now open to all Power BI licensing plans, 
including Power BI free. However, at the time of writing this book, we cannot implement 
calculation groups directly in Power BI Desktop; we have to use Tabular Editor v.2, a 
renowned free community tool built by the fantastic Daniel Otykier.

With this brief explanation and before we jump into the development process, let's get 
more familiar with some requirements and terminologies.

Requirements
As we mentioned earlier, at the time of writing this book, we cannot create calculation 
groups directly in Power BI Desktop: 

• We need to download and install Tabular Editor v.2. You can download it from here: 
https://tabulareditor.com/.

• We must have Power BI Desktop July 2020 or earlier.

https://tabulareditor.com/
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• This requirement only applies to Power BI Desktop versions before September 2020, 
so skip this point if you're using the latest Power BI Desktop version: Enable the 
Store datasets using enhanced metadata format setting from Preview features in 
the Power BI Desktop's Options window. The following screenshot illustrates how 
to enable this feature:

Figure 10.48 – Enabling the "Store datasets using enhanced metadata format" feature

• Disable Implicit Measures for the entire data model. We covered this in Chapter 8, 
Data Modeling Components, in the Fields section.

• The calculation groups do not support implicit measures; therefore, we must have  
at least one explicit measure in the data model.

Terminology
Let's go through the following terminology involved in calculation groups:

• Calculation Group: A calculation group is indeed a table like any other table that 
holds calculation items:

Precedence: Each calculation group has a precedence property that specifies the 
order of evaluation if there is more than one calculation group. The calculation 
groups with higher precedence numbers will be evaluated before the calculation 
groups with lower precedence.
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• Calculation Item: We create calculation items within a calculation group using 
DAX expressions. Calculation items are like template measures that can run over 
any explicit measures we have in our data model. Each calculation group has two 
columns: Name with a Text data type and Ordinal with a Whole Number 
data type. The Name column keeps the names of calculation items. The Ordinal 
column is a hidden column that keeps the sort order of the Name column. In other 
words, the Ordinal column sorts the Name column. We can create as many 
calculation items as required:

Ordinal: Each calculation item has an ordinal property. The ordinal property 
dictates the order in which the calculation items appear in a visual within the 
report. When we set the ordinal property of the calculation items, we are entering 
the values of the Ordinal column. If the ordinal property is not set, the calculation 
items show up in alphabetical order within the report. Setting an ordinal property 
does not affect the precedence and the order in which the calculation items get 
evaluated.

• Sideways Recursion: The term sideways recursion refers to when a calculation 
item references other calculation items within the same calculation group. Sideways 
recursion is allowed unless we create infinite loops, such as when calculation item 
A refers to calculation item B and vice versa. An infinite loop can also occur when 
a calculation item references an explicit measure that refers to the first calculation 
item. It is best to avoid sideways recursion.

Now that we are more familiar with the requirements and terminology, it is time to 
implement calculation groups.

Implementing calculation groups to handle  
time intelligence
One of the most popular use cases for implementing calculation groups is to handle 
time intelligence measures. So, let's create a new calculation group and name it Time 
Intelligence. We must then define a series of time intelligence calculation items 
within the calculation group to meet the business requirements. This section and the next 
will use the Chapter 10, Calculation Groups.pbix sample file, which sources 
the data from the AdventureWorksDW2017.xlsx file. We've already loaded the data 
from the Internet_Sales and Dates tables. We then took some transformation steps 
by renaming the tables and columns. 



482     Advanced Data Modeling Techniques

We also removed unnecessary columns from the data model; then, we Imported the data 
into the data model and marked Date table as Date. We also downloaded and installed 
Tabular Editor v.2. With that, let's get started:

1. Click Tabular Editor from the External Tool tab:

 

Figure 10.49 – Opening Tabular Editor from the External Tools tab

2. In the Tabular Editor, right-click the Tables node, hover over Create New, and click 
Calculation Group. We can also use the Alt + 7 keyboard shortcut:

Figure 10.50 – Creating a new calculation group in Tabular Editor

3. Name the new calculation group Time Intelligence.

4. Set Calculation Group Precedence to 10:
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Figure 10.51 – Creating a calculation group

5. Rename the Name column to Time Calculations.

6. Right-click the Calculation Items node and click New Calculation Item:

Figure 10.52 – Creating calculation items in Tabular Editor
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7. Name the new calculation item Current. This calculation item will show the 
current value of a selected measure.

8. Type the SELECTEDMEASURE() expression into the Expression Editor box.

9. Set the Ordinal property to 0.

10. Click the Accept changes button ( ): 

Figure 10.53 – Adding a DAX expression for a calculation item

11. Create another calculation item, name it YTD with the 
TOTALYTD(SELECTEDMEASURE(), 'Dates'[Date]) expression, and set its 
Ordinal property to 1:
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Figure 10.54 – Creating another calculation item

12. Click the Save ( ) button to save the changes back to our data model in Power BI 
Desktop:

Figure 10.55 – Saving the changes from Tabular Editor back to Power BI Desktop
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13. Go back to Power BI Desktop and click the Refresh now button on the yellow 
warning ribbon:

Figure 10.56 – Refreshing the calculation group after applying the changes back to Power BI Desktop

We can create as many calculation items as the business requires. In our example, we 
added seven calculation items, as shown in the following screenshot:

 

Figure 10.57 – Calculation items created in the sample file

Let's look at these expressions. Ordinal is used to create the preceding calculation items:
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Figure 10.58 – The expressions and ordinals used to create calculated items in the sample file

Look at the LYTD SwR calculation item in the preceding expressions. The LYTD SwR 
calculation item is an example of using Sideways Recursion. The results of the LYTD SwR 
calculation item are the same as the LYTD calculation item. We just wanted to show what 
Sideways Recursion looks like in action. Again, remember to avoid Sideways Recursions 
when possible. They can add unnecessary complexities to our code. Besides, Sideways 
Recursion can become problematic for report contributors who do not have any context 
on Sideways Recursion. Now that we've finished the implementation, let's test it out.

Testing calculation groups
As we mentioned previously, calculation groups only work with explicit measures. So, we 
must create at least one explicit measure in our sample to make the calculation groups 
work. We created the following measures in the sample file:

A measure to calculate SalesAmount:

Total Sales = SUM('Internet Sales'[SalesAmount])
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A measure to calculate OrderQuantity:

Quantity Ordered = SUM('Internet Sales'[OrderQuantity])

Let's test the calculation group we created to see if it works as expected, as follows:

1. In Power BI Desktop, put a Matrix visual on the report page. Put the Year, Month, 
and Date columns from the Dates table into Rows.

2. Put the Time Calculations column from the Time Intelligence calculation 
group into Columns.

3. Put the Total Sales measure from the Internet Sales table into Values:

Figure 10.59 – Visualizing calculation groups in a Matrix visual

As highlighted in the preceding screenshot, there is an issue with the format string of 
YoY%. In the next section, we will go through a simple process to fix this issue.

Fixing the format string issue
As shown in the preceding screenshot, all the calculation items we created earlier within 
the Time Intelligence calculation group are formatted as currency. But we did not set the 
format string for any of the calculation items. These calculation items inherit the format 
string from the selected measure. While inheriting the format string from the selected 
measure is a convenient feature, as highlighted in the preceding image, it may not work 
for all calculation items, such as YoY%. 
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The format string for YoY% must be a percentage, regardless of what the format string 
carries from the selected measure. We must set the format string for the YoY% calculation 
item to fix this issue, which overrides the selected measure's format string. Here, we must 
open Tabular Editor again and set the format string of YoY% to "0.00%". The following 
screenshot shows the preceding fix:

Figure 10.60 – Fixing the format string issue in Tabular Editor

Note
We discussed format strings in Chapter 8, Data Modeling Components, in the 
Fields section, under the Custom formatting subsection.
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The following screenshot shows the Matrix visual after saving the changes back to the 
Power BI Desktop model:

Figure 10.61 – The Matrix visual after fixing the format string issue

As the preceding screenshot shows, the format string issue has been resolved.

DAX functions for calculation groups
There are many use cases for calculation groups that we haven't covered in this chapter. 
Therefore, we leave the rest for you to investigate. However, it is worthwhile mentioning 
the DAX functions that are currently available for calculation groups. The following list 
briefly explains those functions:

• SELECTEDMEASURE(): A reference to an explicit measure that's used on top of 
calculation items. You can learn more about the SELECTEDMEASURE() function 
here: https://docs.microsoft.com/en-us/dax/selectedmeasure-
function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466.

• ISSELECTEDMEASURE( [Measure1], [Measure2], ... ): Accepts a list 
of explicit measures that exist within the data model, and then determines if the 
measure that is currently selected within the visuals is one of the ones mentioned 
in the input list of parameters. It can be used to apply the calculation logic 
conditionally. You can learn more about ISSELECTEDMEASURE( [Measure1], 
[Measure2], ... ) function here: https://docs.microsoft.com/
en-us/dax/isselectedmeasure-function-dax?WT.mc_id=?WT.mc_
id=DP-MVP-5003466.

https://docs.microsoft.com/en-us/dax/selectedmeasure-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasure-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/isselectedmeasure-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/isselectedmeasure-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/isselectedmeasure-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
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• SELECTEDMEASURENAME(): Returns the selected measure's name. It can be 
used to apply the calculation logic conditionally. You can learn more about the 
SELECTEDMEASURENAME() function here: https://docs.microsoft.com/
en-us/dax/selectedmeasurename-function-dax?WT.mc_id=?WT.
mc_id=DP-MVP-5003466.

• SELECTEDMEASUREFORMATSTRING(): Returns the format string defined by the 
selected measure. It can be used to define the format string dynamically based on 
expressions. You can learn more about the SELECTEDMEASUREFORMATSTRING() 
function here: https://docs.microsoft.com/en-us/dax/
selectedmeasureformatstring-function-dax?WT.mc_id=?WT.mc_
id=DP-MVP-5003466.

Summary
In this chapter, we learned about some advanced data modeling techniques, as well as how 
to implement aggregations using big data in Power BI. We also learned how to configure 
incremental refresh, which also helps deal with the challenges of working with large data 
sources. Then, we looked at the concept of Parent-Child hierarchies and implemented one 
in Power BI Desktop. After that, we learned how to deal with roleplaying dimensions in 
Power BI. Last but not least, we implemented calculation groups. 

In the next chapter, Row-Level Security, we will discuss a crucial part of data modeling that 
is essential for organizations that believe the right people must access the right data in the 
right way. See you there!

https://docs.microsoft.com/en-us/dax/selectedmeasurename-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasurename-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasurename-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasureformatstring-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasureformatstring-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
https://docs.microsoft.com/en-us/dax/selectedmeasureformatstring-function-dax?WT.mc_id=?WT.mc_id=DP-MVP-5003466
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Row-Level Security

In the previous chapter, we learned some advanced data modeling techniques such  
as using aggregations, incremental refresh, implementing a parent-child hierarchy,  
role-playing dimensions, and calculation groups. In this chapter, we discuss an essential 
aspect of data modeling, row-level security (RLS). We will cover the following topics:

• What RLS means in data modeling

• RLS terminologies

• RLS implementation flow

• Common RLS implementation approaches

We try to cover the preceding topics with real-world scenarios, but keep in mind that each 
Power BI project may have specific requirements, so it is virtually impossible to cover all 
RLS possibilities and scenarios.
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When it comes to Power BI security, many people immediately think it is something related 
to Power BI administrators, which is correct to some extent. RLS enables the filtering 
of data within an entire data model, to only show relevant data to the relevant users, so 
it is an access control mechanism we directly apply to the data model. In terms of this, 
RLS is directly relevant to data modelers, but at the end of the day we publish our data 
model into the Power BI service or Power BI Report Server, where other users—including 
contributors and end users—will see or use the data model. From this point onward, 
the duty of taking care of the security settings varies from organization to organization. 
In some organizations, it is purely an administrator's job to take care of the RLS-related 
security settings within the Power BI service or Power BI Report Server. At the same time, 
in some other organizations, it falls to data modelers to fully support all aspects of RLS, 
from development to configuration. The latter, though, is not very common except in 
small organizations where Power BI developers take care of development, deployment, and 
administration. Regardless of who takes care of RLS within an organization, we cover the 
end-to-end implementation and configuration of RLS in this chapter.

With that in mind, let's get started.

What RLS means in data modeling
As mentioned previously, RLS is a mechanism to control user access over data so that 
the relevant data is accessible only to the relevant user or group of users. This is merely 
possible by filtering the data based on the users' usernames and the role(s) assigned to 
them by writing simple Data Analysis Expressions (DAX) or, in more complex scenarios, 
by making changes in the data model. Therefore, the relationships between tables and the 
direction of cross-filtering within these relationships are vital.

At the time of writing this book, developing RLS is only possible within Power BI Desktop.

What RLS is not
As mentioned earlier, RLS is simply nothing but filtering data across an entire data model. 
At the time of writing this book, object-level security (OLS) is made available for public 
preview. We will look at OLS in more detail in Chapter 12, Extra Options and Features 
Available for Data Modeling.

Note
We cannot control the visibility of data to developers within Power BI Desktop 
with RLS— this is something that must happen within the source system. 
Regardless of having RLS in place or not, developers have access to all data 
available in the source systems, so it is a mechanism to restrict data access, not 
a permission configuration.
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RLS terminologies
There are some terminologies that we should be familiar with before implementing RLS. 
The following sections introduce these terminologies.

Roles
A role is a name that identifies the characteristic of a security rule over tables in our data 
model. It is best to pick a meaningful name that quickly describes the underlying security 
rules. We can define roles in Power BI Desktop as follows:

1. Click the Modeling tab.

2. Click the Manage roles button.

3. Click the Create button to add a new role.

The preceding steps are highlighted in the following screenshot:

Figure 11.1 – Roles in Power BI Desktop
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Rules
Security rules (or, in short, rules) are DAX—the expressions defining the data that a role 
can see. A DAX expression defining a rule returns a value of true or false. Follow the 
next steps to add a new rule:

1. Click the Manage roles button from the Modeling tab of the ribbon.

2. Type in a DAX expression that returns true or false. We can also click the ellipsis 
button of a table that we want to apply the rule to in order to select a specific column.

3. Click the Verify DAX expression button.

The following screenshot shows a rule that filters out the Currency table's data to only 
show sales with a currency of AUD. We defined the role under the AUD Sales Only role:

Figure 11.2 – Defining RLS rules

Validating roles
When we create roles and rules, we need to test them. Testing roles is also referred to as 
validating roles. We can validate roles in both Power BI Desktop and the Power BI service. 
The following steps show role validation in Power BI Desktop:

1. Click the View as button from the Modeling tab.

2. Select a role to validate.

3. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 11.3 – Validating RLS roles
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The following screenshot shows that the results of the validation only include Internet 
Sales with a currency of AUD. We can click the Stop viewing button to terminate  
the validation:

Figure 11.4 – RLS role validation results

Assigning members to roles in the Power BI service
After having implemented RLS, we need to assign users or groups to roles. Managing 
members is a part of RLS security management within the Power BI service or Power BI 
Report Server. The following steps show how to assign members to a role in the Power BI 
service after publishing a report to a workspace:

1. Click the RLS button.

2. Click the ellipses button next to Dataset.

3. Click Security.

4. Select a role and type the name of a user of a group. 

5. Click the Add button.
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The preceding steps are highlighted in the following screenshot:

Figure 11.5 – Assigning members to RLS roles in the Power BI service

In the next section, we look at an RLS implementation flow in Power BI.

Assigning members to roles in Power BI Report Server
The following steps show how to assign members to a role in Power BI Report Server after 
you have published a report to the server:

1. Open a web browser and navigate to Power BI Report Server.

2. Click the ellipsis button of the desired report.

3. Click Manage.
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The preceding steps are highlighted in the following screenshot:

Figure 11.6 – Managing a report in Power BI Report Server

4. Click Row-level security.

5. Click the Add Member button, as highlighted in the following screenshot:

Figure 11.7 – Managing RLS in Power BI Report Server

6. Type in a username or group name.

7. Select roles to assign to the user.

8. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 11.8 – Assigning users or groups to roles in Power BI Report Server

After we have assigned users or groups to roles, users can only see data that is relevant  
to them.

RLS implementation flow
Implementing RLS in Power BI always follows the same flow, which applies to all 
implementation approaches and all supported storage modes. We can implement RLS 
in the data model; therefore, the dataset's storage mode must be in Import mode, 
DirectQuery mode or Composite mode (Mixed mode). Once we have a data model,  
we have to go through the following flow:

1. Creating security roles.

2. Defining rules within the roles.

3. Validating roles in Power BI Desktop.

4. Publishing a report to the Power BI service or Power BI Report Server.

5. Assigning members to roles within the service or Power BI Report Server.

6. Validating roles in the Power BI service (role validation is not available in Power BI 
Report Server).
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The following diagram illustrates the preceding flow:

Figure 11.9 – RLS implementation flow

In the next section, we look at different implementation approaches.

Common RLS implementation approaches
There are usually two different approaches to implementing RLS in Power BI Desktop: 
static RLS and dynamic RLS. In the following few sections, we look at both approaches  
by implementing real-world scenarios.

Implementing static RLS
A static RLS approach is used when we define rules that statically apply filters to the data 
model—for example, in Figure 11.2, we created a static RLS rule to filter the Internet 
Sales amounts by currency when the currency equals AUD. Static RLS is simple to 
implement, but it can get quite expensive to maintain and support. However, in some 
cases, static RLS is just enough to satisfy the business requirements—for instance, when 
the data model does not include data to support dynamic RLS, implementing and 
supporting dynamic RLS can be more expensive than implementing and supporting static 
RLS. A good example is in an international organization with a few security groups within 
Azure Active Directory (Azure AD) or Microsoft 365, separating users based on their 
geographical location. In our sample, the Adventure Works organization has two security 
groups: one for Australia and another for the rest of the world. The business requires 
RLS implementation so that users from Australia can see only their Internet Sales 
amount. In contrast, the rest of the world can see all Internet Sales amounts  
except Australia's.

The following sections show the implementation of the preceding requirement.
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Creating roles and defining rules: Follow these steps to create roles and for  
defining rules:

1. Click the Manage roles button from the Modeling tab of the ribbon.

2. Click Create.

3. Type in AUD Sales Only as the role name.

4. Click the ellipsis button of the Currency table.

5. Hover over Add filter….

6. Click [CurrencyAlternateKey].

The preceding steps are highlighted in the following screenshot:

Figure 11.10 – Creating an AUD Sales Only RLS role in Power BI Desktop

7. This automatically creates a [CurrencyAlternateKey] = "Value" DAX 
expression. Replace the Value field with AUD.

8. Click the Verify DAX Expression button.
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The preceding steps are highlighted in the following screenshot:

Figure 11.11 – Defining a new RLS rule

9. Click the Create button again.

10. Type in Non-AUD Sales as the role name.

11. Click the ellipsis button of the Currency table.

12. Hover over Add filter….

13. Click [CurrencyAlternateKey].

14. Change the generated DAX expression to [CurrencyAlternateKey] <> "AUD".

15. Click the Validate DAX Expression button.

16. Click Save.
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The preceding steps are highlighted in the following screenshot:

Figure 11.12 – Creating a Non-AUD Sales RLS role in Power BI Desktop

So far, we have created the roles. We now need to validate them. 

Validating roles: The following steps explain role validation within Power BI Desktop:

17. Click the View as button from the Modeling tab.

18. Select a role to validate.

19. Click OK.

20. Click the Stop viewing button after finishing with the validation.
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The following screenshot shows the validation of the Non-AUD Sales role:

Figure 11.13 – Validating the Non-AUD Sales role

Now that we have validated the roles and are sure they work as expected, we need to 
publish a report to the Power BI service model in order to assign members to roles. 

Publishing a report to the Power BI service: Follow these next steps to publish a report 
to the Power BI service:

21. Click the Publish button from the Home tab of the ribbon.

22. Select the desired workspace from the list.

23. Click the Select button.
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The preceding steps are highlighted in the following screenshot:

Figure 11.14 – Publishing a Power BI report to the Power BI service

After the report is successfully published, we need to log in to the Power BI service from  
a web browser to assign members to roles.

Assigning members to roles: After we log in to the Power BI service, we need to navigate 
to the workspace containing the report we published earlier. The following steps show how 
to assign members to roles:

24. Click the More options button of the desired dataset.

25. Click Security.
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The preceding steps are highlighted in the following screenshot:

Figure 11.15 – Managing RLS of datasets in the Power BI service

26. Select the desired role.

27. Type in a user or a group; I have two security groups defined in my environment 
(AU Users and Non-AU Users), so I assign those two groups to the  
corresponding roles.

28. Click Add.

29. Click Save.
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The preceding steps are highlighted in the following screenshot:

Figure 11.16 – Assigning members to roles

Note
We need to have either Admin or Member access right on the workspace 
to assign members to roles or validate roles. If we do not have one of the 
aforementioned access rights, then the Security option does not show up in the 
menu (number 26 in Figure 11.16).

We have now successfully implemented RLS to show sales amounts in Australian Dollars 
(AUD) to our Australian users and to show non-AUD sales to the rest of the world. As 
mentioned earlier, we can also validate roles in the Power BI service. To validate roles 
from the service, we do not need to assign members to roles. Now, let's validate the roles 
in the Power BI service.

Validating roles in the Power BI service: The following steps will help you to validate 
roles in the Power BI service:

30. Click the ellipsis button of a role.

31. Click Test as role.
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The preceding steps are highlighted in the following screenshot:

Figure 11.17 – Validating RLS roles in the Power BI service

This opens a report with the selected RLS role-applied filters. The following screenshot 
shows the validation results for the AUD Sales Only role:

 

Figure 11.18 – The validation results for the AUD Sales Only role
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Now that we have learned how to implement a static RLS scenario, let's look at some more 
complex scenarios that require a dynamic RLS implementation.

Implementing dynamic RLS
When we design and implement RLS, there are many cases where we need to consider 
dynamic RLS when static RLS does not make that much sense. In this section, we look at 
several real-world scenarios that require the implementation of dynamic RLS.

Each user can only access their own data
Imagine that we have a sales data model. We need to implement RLS for salespersons 
so that each salesperson can only see their sales data. Implementing static RLS for such 
a scenario does not make any sense, primarily when many salespersons work for the 
business. Are we going to create one static role per salesperson in Power BI Desktop and 
assign a member to each role in the Power BI service? The answer is obviously no. We can 
create only one role that works dynamically based on the salesperson's username, one of 
the easiest and yet most common dynamic RLS requirements to implement. In this section, 
we use the Chapter 11, Dynamic RLS.pbix sample file supplied with this book.

Implementing the preceding scenario is relatively easy. We need to use one of the 
following DAX functions to retrieve the current username and use it in an RLS role: 

• USERNAME(): Returns the current user's login name in the form of  
DOMAIN_NAME\USER_NAME when used in Power BI Desktop, such as 
biinsight\soheil. The USERNAME() function returns the user's User 
Principal Name (UPN) when published to the Power BI service as well as to  
Power BI Report Server—for example, soheil@biinsight.com.

• USERPRINCIPALNAME(): Returns the user's UPN at connection time. The 
UPN is in email format—for example, soheil@biinsight.com. The 
USERPRINCIPALNAME() function does not accept any parameters.

Implementing RLS in Power BI only makes sense when we publish the model to the 
service or Power BI Report Server, therefore using the USERPRINCIPALNAME() 
function is the preferred function.

Note
If we embed Power BI reports to our proprietary application and have to use 
the user login name, we should use the USERNAME() function.
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Now, it's time to implement the solution. The steps to create roles and rules, validate 
roles, publish to the service, and assign members to roles are all the same as we learned 
before, so we will skip an explanation of those steps in this section. To implement RLS 
to work dynamically for this scenario, we only need to find the matching value in the 
EmailAddress column from the Employee table.

The following steps explain the implementation:

1. Create a role and name it Salespersons Access.

2. Create a rule on the Employee table over the EmailAddress column.

3. Use the [EmailAddress] = USERPRINCIPALNAME() DAX expression.

4. Click Save.

The preceding steps are highlighted in the following screenshot:

Figure 11.19 – Implementing dynamic RLS to filter the data based on the EmailAddress column
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Note
To validate the RLS roles, we do not have to have data visualizations. We can 
switch to Data view then validate the roles.

5. Switch to Data view.

6. Click the Employee table to see the data within Data view.

7. Click the View as button from the Home tab of the ribbon.

8. Tick the Other user option.

9. Type in an email account to test the role.

10. Check the Salespersons Access role.

11. Click OK.

The following screenshot shows the role validation steps:

Figure 11.20 – Validating dynamic RLS roles within Data view
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The following screenshot shows the result after validating the Salespersons Access role:

Figure 11.21 – RLS role validation results within Data view

12. If you would like to see how the data changes in your visuals, click Report view to 
see the changes, as highlighted in the following screenshot:

Figure 11.22 – Validating RLS roles in Report view

Now that we are sure that the RLS role works as expected, we can publish the Power 
BI service report. Suppose we have the correct RLS security settings in the service. In 
that case, users must see only their sales data when opening the report. The following 
screenshot shows a couple of examples of this:
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Figure 11.23 – Dynamic RLS automatically kicks in when users open the report

As shown in Figure 11.23, when Allan opens the report he sees his sales data, and when 
Amy opens the report she only sees her sales data.

Managers can access their team members' data in parent-child 
hierarchies
So far, we have implemented a straightforward scenario with dynamic RLS to enable 
salespersons to see the sales data that's relevant to them. Let's now have a look at a 
more complex scenario. Suppose the business started using the report and everyone is 
happy apart from the sales managers and—more importantly—the organization's chief 
executive officer (CEO). The feedback from sales managers is that they can only see their 
own data and not that of their team members. More significant is the feedback from the 
CEO, who cannot see any sales data. The CEO cannot see any data because they are not 
a salesperson; while they do not sell any products, they still require access to everyone's 
sales data. The business needs us to implement a dynamic RLS role so that every 
salesperson can see their sales data. Managers can also see their team members' sales.
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Moreover, the CEO can see everyone's sales. To implement this scenario, we need to have 
an organizational chart handy to create a parent-child hierarchy. The Employee table 
in the data model contains the necessary data we require to implement the preceding 
scenario, the EmployeeKey and the ParentEmployeeKey columns to create the 
parent-child hierarchy, and the EmailAddress column to identify the users' UPN.

To implement RLS for this scenario, we use the EmployeeKey and 
ParentEmployeeKey columns to create a calculated column to identify the parent-
child hierarchy path using the following DAX expression:

EmployeePath = PATH(Employee[EmployeeKey], 
Employee[ParentEmployeeKey])

The results of the preceding code snippet are shown in the following screenshot:

Figure 11.24 – Creating the EmployeePath calculated column in the Employee table

The next step is to identify the EmployeeKey value based on the user's UPN.
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The following DAX expression retrieves the EmployeeKey value of the current user 
based on their UPN: 

CALCULATETABLE(

    VALUES(Employee[EmployeeKey])

    , FILTER(Employee, Employee[EmailAddress] = 
USERPRINCIPALNAME())

    , FILTER(Employee, Employee[Status] = "Current")

)

Note 
The Employee table keeps a record of an employee's employment history, 
so we always want to get the EmployeeKey value for employees when their 
status is Current. Therefore, we need to check the Status column as well.

To test the previous code, we can create a measure using this then validate it, just like 
when validating any other RLS roles. The following screenshot shows the result of using 
the same code in a measure used in a card visual:

Figure 11.25 – Validating DAX expressions for RLS in a measure

Note
Remember to remove the EmployeeKey measure. We created it for testing 
purposes only.
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Now that we have retrieved the EmployeeKey value, we can use the result to find all 
rows where an EmployeeKey value appears within the EmployeePath calculated 
column. To understand the scenario, let's have a closer look at the data. The following 
screenshot shows all salespersons' sales, their EmployeeKey values, names, email 
addresses, and EmployeePath values:

Figure 11.26 – Salespersons' sales

As the preceding screenshot shows, Allan, Amy, and Syed are sales managers. The 
sales managers are also salespersons themselves, so they also sell products. The 
EmployeePath column's values reveal that the sales managers are in the third level 
of the organizational chart, as their employee keys appear in the third position within 
the EmployeePath values, so they must see all sales data of their team members in 
which their employee keys appear after the sales managers. Needless to mention that 
the person with an employee key of 277, which is one level below the person with an 
employee key of 112, must see all sales data. The person with an employee key of 112 is 
the CEO. To implement this scenario, we must find each person's employee key within the 
EmployeePath value for each row. The good news is that there is a specific function in 
DAX to find values in a parent-child path: PATHCONTAINS(<Path to lookup>, 
<value to be found within the Path>). The PATHCONTAINS() function 
returns True if the specified value appears within the path. We already have the path 
values within the EmployeePath column. We also authored the DAX expression to 
retrieve the employee key of the current user. This is the value to be found within the path. 
So, the DAX expression looks like this:

VAR _key = CALCULATETABLE (

    VALUES ( Employee[EmployeeKey] ),
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    FILTER ( Employee, Employee[EmailAddress] = 
USERPRINCIPALNAME()),

    FILTER ( Employee, Employee[Status] = "Current" )

)

RETURN

PATHCONTAINS (

            Employee[EmployeePath], _key

)

The only remaining part is to create a role and use the preceding expression as a rule. The 
following screenshot shows that we created a new role, Sales Team, with the preceding 
DAX expression as its rule:

Figure 11.27 – Creating a Sales Team role for dynamic RLS
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Now, we validate the Sales Team role for one of the managers. The following screenshot 
shows the validation results when Allan uses the report:

Figure 11.28 – Validating dynamic RLS, enabling sales managers to see their team members' sales

We can now publish the report to the service.

Remember
If you are a Power BI tenant administrator, you need to assign members to the 
new Sales Team role. Otherwise, ask your Power BI administrator to do so.

Now, when staff use the report, they can access all their team members' sales if they are a 
sales manager. The following screenshot shows what Amy sees after opening the report:

Figure 11.29 – When users open the report in the Power BI service, the Sales Team RLS role kicks in
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Now, let's see what the CEO can see after opening the report. As a reminder, the CEO can 
see everyone's sales data, as illustrated in the following screenshot:

Figure 11.30 – The CEO can see everyone's data

While the preceding scenario was rather more complex than the first one, there is always  
a trickier scenario. You must have noted that the Employee table contains the users' login 
data to implement the previous scenarios, such as the EmailAddress value. In the next 
section, we learn how to implement scenarios when the email address data does not exist 
in the Employee table.

Getting the user's login data from another source
Suppose we have a scenario where the business has the same requirement as outlined 
previously; however, the source system does not contain the EmailAddress column in 
the Employee table. In that case, the scenario is different. We need to get the users' login 
data from a different source. While the new data source provides users' login data, it may 
not necessarily have an EmployeeKey column to relate employees to their login data. 
Depending on the source system, we may get a very different set of data. In our scenario, 
we asked the system administrators to give us an extract of the organization's Azure AD 
users. They provided a JavaScript Object Notation (JSON) file containing a list of all 
users' UPNs. You can find the file in this book's resources (Chapter 11, Adventure 
Works, AAD UPNs.json).
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Note
In real-world scenarios, we have to think about automating the process of 
generating the JSON file to keep it up to date.

The generated JSON file contains sensitive data, therefore it must be stored in a 
secured location accessible by a restricted number of users.

For convenience, we use the same Power BI file as in the previous scenario. We just ignore 
the EmailAddress column in the Employee table.

The following steps explain how to overcome this challenge:

1. In Power BI Desktop, get the data from the provided JSON file, as illustrated in the 
following screenshot:

Figure 11.31 – Getting data from JSON file
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2. Power BI detects the contents automatically and expands the values, so the results 
look like this:

Figure 11.32 – Power BI automatically detects the JSON file's contents

3. Rename the query as Users.

4. Remove the @odata.context column.

5. Rename the value.givenName column as First Name, the value.surname 
column as Last Name, and the value.userPrincipalName column as 
Email Address. The results look like this:

Figure 11.33 – Preparing the Users table
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As you see, we do not have the EmployeeKey column in the Users table. However, 
we can get the EmployeeKey value from the Employee table by finding the matching 
values based on the First Name and Last Name columns. The following steps show 
how to do this:

6. Merge the Users table with the Employee table on the First Name and Last 
Name columns from the User and FirstName and LastName columns from the 
Employee table. Set the Join Kind value to Left Outer (all from first, matching 
second), as illustrated in the following screenshot:

Figure 11.34 – Merging the Users table with the Employee table
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7. Expand the Employee structured column to keep the EmployeeKey and 
Status columns, as illustrated in the following screenshot:

Figure 11.35 – Expanding the Employee structured column

Note
Remember—the Employee table keeps the employees' history, which means 
we can potentially duplicate values. Therefore, we need to keep the Status 
column to make sure all employees' statuses are Current.

8. Filter the Status column to only show rows with a Current status, as illustrated in 
the following screenshot:

Figure 11.36 – Filtering the Employee table to show the rows with a Current status
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9. Click the Close & Apply button to load the Users table into the data model, as 
illustrated in the following screenshot:

Figure 11.37 – Applying the changes and loading the Users table into the data model

10. Switch to Model view.

11. Create a new relationship between the Users table and the Employee table if 
Power BI Desktop has not automatically detected the relationship, as illustrated in 
the following screenshot:

Figure 11.38 – Creating a relationship between the Users and Employee tables
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As you see in the preceding screenshot, the relationship between the Users and the 
Employee tables is a one-to-one relationship, which is precisely what we are after. Now, 
we can create a new role on the Employee table, as explained in the following steps:

12. Create a new RLS role and name it Sales Team2, then create a new rule on the 
Employee table using the following DAX expression, as shown in Figure 11.39:

VAR _key = CALCULATETABLE (

          VALUES ( Users[EmployeeKey] ),

          FILTER ( Users, Users[Email Address] = 
USERPRINCIPALNAME())

)

RETURN

PATHCONTAINS (

            Employee[EmployeePath], _key)

Figure 11.39 – Creating a new RLS role and rule on the Employee table

Note
As we already filtered all rows in the Users table to only show the current 
users, we do not need to add an additional FILTER() function in the 
CALCULATETABLE() code block.
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13. Last, but not least, is to validate the role by clicking the View as button from the 
Modeling tab of the ribbon, as illustrated in the following screenshot:

Figure 11.40 – Validating the new RLS role

So far, we have learned how to deal with business security requirements. We learned that 
to implement some requirements, we have to make some changes in our data model. 
While we covered some common scenarios, there are many more complex scenarios that 
we cannot cover in a single chapter, so we leave it to you to investigate more.

Summary
In this chapter, we learned how to implement RLS in Power BI Desktop and manage the 
roles within the Power BI service as well as in Power BI Report Server. We learned what 
static RLS and dynamic RLS approaches are and how to implement them in our data 
model in order to make the relevant data available only to the relevant people. In the 
next chapter, Extra Options and Features Available for Data Modeling, we look at slowly 
changing dimensions, OLS, dataflows, and composite models.
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Extra Options and 
Features Available 
for Data Modeling

In the previous 11 chapters, we learned many aspects of data modeling to model many 
different scenarios. This chapter provides brief introductions to some more options 
available in the Power BI platform that can come in handy in many real-world scenarios. 
All of the topics discussed in this chapter are too extensive to go through each one in too 
much detail, but it is nonetheless worthwhile having exposure to them all. In this chapter, 
we cover the following areas:

• Dealing with slowly changing dimensions (SCDs)

• Introduction to object-level security (OLS)

• Introduction to dataflows

• Introduction to composite models
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Dealing with SCDs
The term slowly changing dimension, which we usually refer to with its short form, 
SCD, is a data warehousing concept introduced by the amazing Ralph Kimball. You can 
learn more about Ralph Kimball here: https://www.kimballgroup.com/about-
kimball-group/.

The SCD concept deals with moving a specific set of data from one state to another. 
Imagine we have a human resources (HR) system; Stephen Jiang is a Sales 
Manager, having 10 sales representatives in his team. The following screenshot shows the 
sample data for our scenario:

Figure 12.1 – Stephen Jiang is the sales manager of a team of 10 sales representatives

Today, Stephen Jiang has been promoted to Vice President of Sales, so his 
team grows in size from 10 to 17. The following screenshot shows the changes:

https://www.kimballgroup.com/about-kimball-group/
https://www.kimballgroup.com/about-kimball-group/
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Figure 12.2 – Stephen's team after he was promoted to Vice President of Sales

Another example is when a customer's address changes in the sales system. Again, the 
customer is the same, but their address is now different. Depending on the business 
requirements, we have some options to deal with such situations from a data warehousing 
standpoint—this leads us to different types of SDCs. Just keep in mind that the data 
changes are happening in the source systems (in our examples, the HR system or a 
sales system), which are transactional. Then, we transform and move the data from the 
transactional systems via extract, transform, and load (ETL) processes and land the 
transformed data into a data warehouse, which is where the concept of SCD kicks in. SCD 
is about how changes in the source systems reflect the data in the data warehouse. These 
kinds of changes in the source system are not something that happens very often, hence 
the term slowly changing. Many SCD types have been developed over the years, which 
means that covering them is out the scope of this book, but for your reference, we cover 
the first three types as follows.
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SCD type zero (SCD 0)
With this type of SCD, we ignore all changes in a dimension. So, when a person's 
residential address changes in the source system (an HR system, in our example), we do 
not change the landing dimension in our data warehouse. In other words, we ignore the 
changes within the data source. SCD 0 is also referred to as fixed dimensions.

SCD type 1 (SCD 1)
With a SCD 1 type, we overwrite the old data with the new. An excellent example of an 
SCD 1 type is when the business does not need to have the customer's old address and 
only needs to keep the customer's current address.

SCD type 2 (SCD 2)
With this type of SCD, we keep the history of data changes in the data warehouse when 
the business needs to keep the customer's old address and the current address. In an 
SCD 2 scenario we need to maintain history, so we insert a new row of data into the data 
warehouse whenever a change happens in the transactional system. Inserting a new row 
of data causes data duplications in the data warehouse, which means that we cannot use 
the CustomerKey column as the primary key of the dimension. Hence, we need to 
introduce  a new set of columns, as follows:

• A new key column that guarantees rows' uniqueness in the Customers 
dimension. This new key column is simply an index representing each row of 
data stored in a data warehouse dimension. The new key is a so-called surrogate 
key. While the Surrogate Key guarantees each row in the dimension is unique, we 
still need to maintain the source system's primary key. By definition, the source 
system's primary keys are now called business keys or alternate keys in the data 
warehousing world.

• A Start Date and an End Date column to represent the timeframe during 
which a row of data is in its current state.

• Another column that shows the status of each row of data.

SCD 2 is the most common type of SCD. 

Let's revisit our previous example when Stephen Jiang was promoted from Sales 
Manager to Vice President of Sales. The following screenshot shows the data 
before Stephen got the promotion:
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Figure 12.3 – The employee data before Stephen was promoted

In the preceding screenshot, the EmployeeKey column is the Surrogate Key of the 
dimension and the EmployeeBusinessKey column is the Business Key (the primary 
key of the customer in the source system), the Start Date column shows the date 
Stephen Jiang started his job as North American Sales Manager, the End 
Date column has been left blank (null), and the Status column shows Current. Now, 
let's have a look at the data after Stephen gets the promotion, which is illustrated in the 
following screenshot:

Figure 12.4 – The employee data after Stephen gets promoted

As Figure 12.4 shows, Stephan Jiang started his new role as Vice President of 
Sales on 13/10/2012 and finished his job as North American Sales Manager 
on 12/10/2012.

Let's see what SCD 2 means when it comes to data modeling in Power BI. The first 
question is: Can we implement SCD 2 directly in Power BI Desktop without having a data 
warehouse? To answer this question, we have to remember that we create a semantic layer 
when we build a data model in Power BI. The semantic layer, by definition, is a view of the 
source data (usually a data warehouse), optimized for reporting and analytical purposes. 
The semantic layer is not there to replace a data warehouse or another version of a data 
warehouse. Suppose the business needs to keep a history of changes. In that case, we either 
need to have a data warehouse, or the transactional system has to find a way to maintain 
historical data, such as a temporal mechanism. A temporal mechanism is a feature 
that some relational database management systems such as SQL Server offer to provide 
information about the data kept in a table at any point in time, instead of keeping the 
current data only. To learn more temporal tables in SQL Server, check out the following 
link: https://docs.microsoft.com/en-us/sql/relational-databases/
tables/temporal-tables?view=sql-server-ver15&WT.mc_id=5003466.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15&WT.mc_id=5003466
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15&WT.mc_id=5003466
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After we load the data into the data model in Power BI Desktop, we have all current and 
historical data in the dimension tables. Therefore, we have to be careful when dealing with 
SCDs. For instance, the following screenshot shows reseller sales for employees:

Figure 12.5 – Reseller sales for employees without considering SCD
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At a first glance, the numbers seem to be right. Well, they may be right; they may be 
wrong. It depends on what the business expects to see on a report. We did not consider 
SCD when we created the preceding table, which means we consider Stephen's sales values 
(EmployeeKey 277). But is this what the business requires?  Does the business expect 
to see all employees' sales without considering their status? For more clarity, let's add the 
Status column to the table. The following screenshot shows the same values as those 
displayed in Figure 12.5:

Figure 12.6 – Reseller sales for employees and their status without considering SCD
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What if the business needs to only show sales values only for employees when their status 
is Current? In that case, we would have to factor the SCD into the equation and filter 
out Stephen's sales values. Depending on the business requirements, we might need to add 
the Status column as a filter in the visualizations, while in other cases, we might need to 
modify the measures by adding the Start Date, End Date, and Status columns to 
filter the results. The following screenshot shows the results when we use visual filters to 
take out Stephen's sales:

Figure 12.7 – Reseller sales for employees considering SCD

Dealing with SCDs is not always as simple as this. In some cases, we need to make some 
changes to our data model. As mentioned at the beginning, we are not diving deep into 
various scenarios in this chapter, so we will leave it to you to investigate more. In the next 
section, we look at OLS, which is under public preview at the time of writing this book.
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Introduction to OLS
In Chapter 11, Row-Level Security, we learned how to restrict data access for end users 
using RLS. In this section, we look at object-level security in Power BI. With OLS, we can 
hide the model objects based on the usernames and their roles, such as hiding an entire 
table or hiding some table columns for specific users. Therefore, if users use the Analyse 
in Excel feature to connect to a dataset, they can see only the tables and columns they 
have permission to see.

Notes
At the time of writing this book, OLS has just been released for public preview. 
Therefore, it is subject to change.

At the time of writing this book, we cannot create OLS within Power BI 
Desktop. Instead, we have to use Tabular Editor.

We cannot control the data's visibility to developers within Power BI Desktop 
with OLS or RLS. This is something that must happen within the source 
system. Regardless of whether OLS or RLS is in place or not, developers have 
access to all data available in the source systems. It is essential to know that RLS 
and OLS are not permission configurations; they only restrict users' access to 
specific rows in RLS or a specific object in OLS.

Implementing OLS
Let's go ahead and see how OLS works. Suppose the business needs to hide some objects 
from a specific group of people, as follows:

• Hide the Internet Sales table from everyone who is a member of the Internet 
Sales Denied security group.

• Hide the OrderQuantity column of the Internet Sales table from  
members of the OrderQty Denied security group.

We will use the Chapter 12, OLS.pbix sample file provided with the book.
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In the preceding scenario, we need to have two security groups available. We assume you 
have those two security groups to hand. The following steps show how to implement the 
scenario:

1. Open the desired Power BI report and click the Manage Roles button.

2. Click the Create button to create a new role.

3. Type in Internet Sales Denied for the name of the new role.

4. Click the Create button again, and then type in OrderQty Denied for the name  
of the new role.

5. Click Save.

The preceding steps are highlighted in the following screenshot:

Figure 12.8 – Creating two new security roles
We now have to switch to Tabular Editor to implement the rest of the scenario.  
To do this, proceed as follows:

6. Click the External Tools tab on the ribbon.

7. Click Tabular Editor.
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The process is illustrated in the following screenshot:

Figure 12.9 – Opening Tabular Editor from the External Tools tab

Note
Make sure you have the latest version of Tabular Editor installed on your 
machine.

8. In  Tabular Editor, expand the Tables folder.

9. Click the Internet Sales table.

10. Expand Object Level Security from the Properties pane.

11. From the Internet Sales Denied drop-down menu, select None.

The preceding steps are illustrated in the following screenshot:

Figure 12.10 – Setting up OLS for tables in Tabular Editor
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So far, we set OLS for the Internet Sales table, so whoever is a member of the 
Internet Sales Denied security group could not see the Internet Sales table, as if 
it didn't exist. In the next few steps, we implement the second part of the requirements 
within Tabular Editor, as follows:

12. Expand the Internet Sales table.

13. Click the OrderQuantity column.

14. Expand Object Level Security from the Properties pane.

15. From the OrderQty Denied drop-down menu, select None.

16. Save the changes to the model.

The preceding steps are highlighted in the following screenshot:

Figure 12.11 – Setting up OLS for columns

We have now implemented all OLS settings required by the business. In the next section, 
we test the roles. 

Validating roles
Role validation for OLS is the same as what we did for RLS. The following steps show how 
to validate roles:

1. In Power BI Desktop, click the View as button from the Modeling tab.

2. Check the Internet Sales Denied role.

3. Click OK.
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The preceding steps are highlighted in the following screenshot:

Figure 12.12 – Validating the Internet Sales Denied role

The result of the validation is shown in the following screenshot. Please note that the 
Internet Sales table has disappeared from the Fields pane, and also, all visuals 
linked to the Internet Sales table are broken:

Figure 12.13 – Viewing the report as Internet Sales Denied role
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We can validate the OrderQty Denied role in the same way. The following screenshot 
shows the result of the validation:

Figure 12.14 – Validating the OrderQty Denied role

As the preceding screenshot shows, only the visuals linked to the OrderQuantity 
column from the Internet Sales table are broken. Here are other things that have 
happened: 

• The OrderQuantity column has disappeared from the Internet Sales table.

• The Order Qty measure that was linked to the OrderQuantity column has also 
disappeared. 

Assigning members to roles in the Power BI service
After we have implemented OLS, we need to publish a report to the Power BI service, 
and then we have to assign users or groups to roles within the service. The following steps 
show how to assign members to a role in the Power BI service after publishing a report to 
a workspace:

1. Click the ellipsis button next to the desired dataset.

2. Click Security.

3. Select a role.
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4. Type the name of the user of a group (in this case, it is a security group).

5. Click the Add button.

The preceding steps are highlighted in the following screenshot:

Figure 12.15 – Assigning members to roles in the Power BI service

Note
I already created two security groups with the same names as the roles 
(Internet Sales Denied and OrderQty Denied).

We will repeat the preceding steps to assign the OrderQty Denied security group to the 
OrderQty Denied role. In the next section, we look at validating security roles within the 
Power BI service to ensure everything works as expected. 

Validating roles in the Power BI service
In this section, we validate the roles in the service by following these steps after navigating 
to the desired workspace:

1. Click the ellipsis button next to a dataset.

2. Click Security.

3. Click the ellipsis button of a role you want to validate.

4. Click Test as role.
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The preceding steps are highlighted in the following screenshot:

Figure 12.16 – Validating security roles in the service
The following screenshot shows the result of the validation:

Figure 12.17 – The validation result in the Power BI service

In this section, we learned how to set up OLS in Power BI. In the next section, we look at 
some applications of dataflows.
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Introduction to dataflows
Microsoft announced the public preview availability of dataflows in November 2018.  
Later on, in April 2019, dataflows became generally available. Back then, dataflows were  
a Premium feature. However, nowadays, we can leverage them in various Power Platform 
technologies as well as a Power BI Pro licensing plan. With that brief history, let's discuss 
what a dataflow is. In short, dataflows are a cloud version of Power Query, which is also 
known as Power Query Online. From a Power BI perspective, we can leverage Power 
Query's power to prepare and shape data within the Power BI service using dataflows.

Note
Dataflows are not only a component of Power BI. Other tools and services can 
also access data held by dataflows.

The prepared data is stored in the shape of files and folders, known as the Common Data 
Model (CDM) folder, in Azure Data Lake Storage Gen2 (ADLS Gen 2) and managed 
in the Power BI service. If the organization owns an ADLS Gen 2 already, we can expose 
the prepared data to various tools and services. Moreover, with the use of dataflows, we 
can make the prepared data available for the organization's users. Dataflows are a self-
service ETL tool available in a Power BI platform that makes data preparation processes 
less dependent on Information Technology (IT) departments. Dataflows enable users to 
use a set of consumption-ready data. As a result, in the long run, dataflows can decrease 
development costs by increasing reusability. 

The main difference between data preparation in Power Query within Power BI Desktop 
and dataflows is that when we use Power BI Desktop to prepare the data, the results are 
only available within the data model. After we publish the Power BI service model, the 
entities are available within the published dataset. Some may think that we still can access 
the dataset's tables and data from other datasets in a composite model scenario. That is 
possible, but it is not the right design model to create a composite model for the sake of 
getting the prepared data into our data model. We will discuss composite models later in 
this chapter. 
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Scenarios for using dataflows
Having a centralized cloud-based self-service data preparation mechanism sounds so 
compelling that you might think of leaving Power Query in Power BI Desktop behind 
and move all data preparation activities to dataflows. Well, that doesn't sound a practical 
idea. The following are some scenarios where using dataflows makes more sense. We use 
dataflows in the following situations:

• We do not have a data warehouse in our organization. All our Power BI reports 
are getting data directly from the source systems, which affects the source systems' 
performance. Therefore, we need to create an organizational data warehouse. In this 
scenario, we follow the regular data warehouse architecture by separating activities 
into staging the data, transforming the data and building a star schema.

• We want to share the data preparation logic across the organization. As a result, 
many other datasets and reports inside Power BI—or, in general, Power  
Platform—can reuse the prepared data.

• The organization owns ADLS Gen 2, and we want to connect other Azure services 
to the prepared data.

• We want to create a single source of truth (SSOT) for our business analysts. 
Therefore, we can create dataflows that analysts can connect to rather than 
connecting to underlying transactional systems or dealing with disparate files.

• We need to prepare data from large data sources, and we own a Power BI Premium 
capacity; dataflows provide more flexibility and work more efficiently.

• We want to use the prepared data across various technologies in Power Platform. 
When we create the dataflows, we can make them available for other Power 
Platform products such as Power Apps, Power Automate, Power Virtual Agent, and 
Dynamics 365.

• We need a self-service data preparation tool that does not require a lot of IT 
or development background. Indeed, the dataflows' creators only need to have 
knowledge of Power Query. 
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Dataflow terminologies
As mentioned earlier, dataflows are also known as Power Query Online; therefore, they 
inherit many Power Query terminologies. The following terminologies are ones that are 
either applicable in dataflows or are another version of a term that is already available in 
Power Query:

• Fields: Fields are just like columns in Power Query.

• Entities: An entity consists of a set of fields or columns, similar to in Power Query. 
Some resources refer to an entity as a table, but there is a difference between an 
entity in dataflows and a query in Power Query in Power BI Desktop. In Power 
Query, in Power BI Desktop, all entities are called queries. But in dataflows, there 
are different types of entities, as follows:

• Normal entity: Just like a table query in Power Query in Power BI Desktop. 
The icon currently used for normal entities is .

• Linked entity: We have a linked entity when we reference an existing entity 
defined in another dataflow. When we create a linked entity, the data will not 
load into the new dataflow; only a link to the source dataflow exists in the new 
one. For that reason, the linked entities are read-only. As a result, we cannot 
create any further transformation steps. The icon currently used for linked 
entities is .

• Computed entity: Computed entities are entities referencing other entities by 
taking more transformation steps. In this type of entity, data is processed for 
the source entity within the source dataflow. The data then flows through the 
transformation steps in the new entity. The transformed data then gets stored 
for the new dataflow. The icon currently used for computed entities is .

Note
Both linked entities and computed entities are only available in Power BI 
Premium, but the source entities for either linked and computed entities can 
be on a regular Power BI Pro workspace.

The workspace keeping the linked entities must be a modern workspace (not 
the classic workspaces linked to Office 365 groups).

We can link to entities in multiple dataflows residing in multiple modern 
workspaces.
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Creating dataflows
To create a dataflow, we have to log in to our Power BI service in the browser of our 
choosing. The following steps show how to start creating a new dataflow:

1. Select any desired workspace.

2. Click the New button.

3. Click Dataflow.

The preceding steps are highlighted in the following screenshot:

Figure 12.18 – Creating dataflows in the Power BI service
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Now, depending on the type of workspace hosting the dataflow, we may have one of the 
following options:

• Option A: A regular classic workspace, as illustrated in the following screenshot:

Figure 12.19 – Creating dataflows in a regular classic workspace
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• Option B: A classic workspace backed by a Premium capacity, as illustrated in the 
following screenshot:

Figure 12.20 – Creating dataflows in a classic workspace backed by a Premium capacity
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• Option C: A modern workspace, as illustrated in the following screenshot:

Figure 12.21 – Creating dataflows in a modern workspace

As you see in Figure 12.21, all options to create a new dataflow are available in a modern 
workspace. However, if the workspace is not a Premium workspace, we can still create 
a LinkedIn entity but we cannot refresh it. The following sections show how to create 
new entities, linked entities, and importing models. We avoid discussing the Attach a 
Common Data Model folder because it is in preview and has not been released yet at the 
time of writing this book. 
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Creating new entities
So far, we navigated to the desired workspace and started creating the entities in our 
dataflow. To create a new entity from the options available (as shown in Figure 12.21)  
we follow these next steps:

1. Click Define new entities, as illustrated in the following screenshot:

Figure 12.22 – Defining new entities within a dataflow

2. Select any desired data source connector, as illustrated in the following screenshot:
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Figure 12.23 – Selecting a data source connector

3. Fill in the Connection settings fields.

4. Click Next.

The preceding steps are highlighted in the following screenshot:

Figure 12.24 – Filling in the Connection settings fields
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5. Select entities from the Power Query - Choose data form. (You may see a different 
form, depending on the data source you selected in the previous steps. We used  
a Northwind OData sample.)

6. Click Transform data.

The preceding steps are highlighted in the following screenshot:

Figure 12.25 – Power Query - Choose data form when creating a new dataflow

We have now navigated to the Power Query - Edit queries form. This form is similar 
Power Query Editor window in Power BI Desktop. One point to notice in the Power 
Query - Edit queries form is the warnings section. As the following screenshot shows,  
if there are any issues in loading the data from some columns, a warning message shows 
up in the Warnings section. We can click on the warnings section to see more details:
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Figure 12.26 – Warning message after getting data from the source

As shown in Figure 12.26, we can click the warning message to take action if necessary. 
After we have finished all the required transformation steps, we can save the dataflow by 
clicking the Save & close button. 

The next step is to give our dataflow a name and save it, as shown in the following 
screenshot:

Figure 12.27 – Saving the dataflow
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Unlike Power Query Editor in Power BI Desktop, which loads the data from the source 
immediately after we click the Close & Apply button, dataflows will not automatically 
load data from the source. Instead, we have an option to refresh the data or schedule  
a data refresh, as shown in the following screenshot:

Figure 12.28 – Data refresh options after creating a new dataflow

We can populate the tables by clicking the Refresh now button or by setting a schedule  
to refresh the tables automatically.
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Creating linked entities from other dataflows
We can create linked entities from other dataflows to create a new dataflow, or add a 
linked entity to an existing dataflow. The following steps show how to add linked entities 
as a new dataflow:

1. After navigating to the desired workspace and starting to create entities in our 
dataflow, click the Add linked entities button, as illustrated in the following 
screenshot:

Figure 12.29 – Adding linked entities as a new dataflow
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2. Go through the Connection settings.

Note
If the source data is an on-premises data source, you need to install an  
on-premises data gateway. On-premises data gateways are out of the scope  
of this book, but I encourage you to check out the following links: 

The Microsoft documentation: https://docs.microsoft.com/
en-us/power-bi/connect-data/service-gateway-
onprem?WT.mc_id=5003466

BI Insight, Implementing On-premises Data Gateway (Enterprise Mode): 
https://wp.me/p3L3Ff-1z0 

3. Click Next.

The preceding steps are highlighted in the following screenshot:

Figure 12.30 – Connection settings to create linked entities

4. In the Power Query - Choose data form, expand a workspace.

5. Select any desired dataflows.

6. Click the desired tables.

7. Click the Transform data button.

https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-onprem?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-onprem?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-onprem?WT.mc_id=5003466
https://wp.me/p3L3Ff-1z0
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The preceding steps are highlighted in the following screenshot:

Figure 12.31 – Selecting tables from another dataflow to link

8. Click Save & close, as illustrated in the following screenshot:

Figure 12.32 – Save & close changes for selected linked entities
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9. Type in a name and then click the Save button, as illustrated in the following 
screenshot:

Figure 12.33 – Saving linked entities as a new dataflow

So far, we have learned how to create new dataflow entities or linked entities. In the next 
section, we learn how to create computed entities.

Creating computed entities
In this section, we learn how to create computed entities. The most common way to 
create a computed entity is within an existing dataflow by referencing another entity. 
The following steps show how to create a computed entity after navigating to the desired 
workspace and opening a dataflow:

1. Click the Edit entities button, as illustrated in the following screenshot:

Figure 12.34 – Editing entities in a dataflow
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2. Right-click an entity from the Queries pane.

3. Click Reference.

The preceding steps are highlighted in the following screenshot: 

Figure 12.35 – Creating a computed entity
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Our computed entity is created, as shown in the following screenshot:

Figure 12.36 – Computed entity

We can also create a computed entity from a linked entity by referencing it or adding some 
transformation steps. Remember: linked entities are read-only; therefore, if we modify the 
entity, the entity is no more a linked entity—it is now a computed entity.

Exporting and importing dataflows
We can export and import dataflows. In this section, we learn how to export a dataflow 
and how to import exported dataflows.

Exporting dataflows
Navigate to the desired workspace, then proceed as follows:

1. Hover over a dataflow and click the ellipsis button.

2. From the menu, click Export.json.

3. A message shows up when the file is ready.

4. Depending on your browser, the JavaScript Object Notation (JSON) file 
downloads automatically to your local machine.
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The preceding steps are highlighted in the following screenshot:

Figure 12.37 – Exporting dataflow definitions in JSON format
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Importing dataflows
Importing a dataflow is simple. The following steps show how to import a dataflow after 
navigating to the desired workspace:

1. Click the New button.

2. Click Dataflow, as illustrated in the following screenshot:

Figure 12.38 – Creating a new dataflow

3. Click the Import model option.

4. Select an exported dataflow definition file (JSON).

5. Click Open.
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The preceding steps are highlighted in the following screenshot:

Figure 12.39 – Importing a dataflow

When we go back to the workspace, we see the imported dataflow. Just one more thing  
to note – we only import the dataflow definition; therefore, the data is not imported. As  
a result, we need to refresh the data later.

Introduction to composite models
In Chapter 4, Getting Data from Various Sources, we discussed different storage modes for 
a dataset. Let's quickly recall the storage modes for datasets, as follows:

• Import: For when we keep the data model in Power BI, and the whole data is 
cached in the memory. In this mode, all tables are in Import storage mode.

• DirectQuery: For when we create a data model in Power BI, but the data is NOT 
cached in the memory. In this mode, all tables are in DirectQuery storage mode.
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• Connect Live: A specific type of DirectQuery, connecting to a semantic model, 
not a relational database (data store). When we use Connect Live, the data model is 
hosted somewhere else; therefore, we cannot make any changes in the data model. 
Instead, we can only get data ready from the data model.

• Composite (Mixed): For when a portion of data is cached in the memory, while the 
rest is not. In this mode, some tables are in Import storage mode, and some tables 
are in DirectQuery storage mode or Dual storage mode.

The latter is the main topic for this section. Previously, composite models only supported 
relational databases for DirectQuery. This means that SQL Server Analysis Services 
(SSAS), SSAS tabular models, Azure Analysis Services (AAS), and Power BI Datasets 
were automatically out of the game. With the December 2020 release of Power BI Desktop, 
Microsoft introduced a new generation of composite models. This new generation not 
only supports DirectQuery connections over relational databases such as SQL Server 
databases, but it also supports DirectQuery in AAS instances and Power BI datasets. 

Note
At the time of writing this book, on-premises instances of SSAS tabular models 
are not yet supported.

This is a massive change in how we interact with the data, especially from an analytical 
perspective. With composite models, we can now connect to the individual semantic 
layers from a single Power BI data model. We can also import data from other data 
sources such as SQL Server or Excel and create an enterprise-grade self-service semantic 
layer using Power BI. 

New terminologies
The new generation of composite models comes with new terminologies. Understanding 
these terms will help us in resolving more complex scenarios more efficiently, with fewer 
issues as a result. In the following few sections, we learn about those new terms.

Chaining
Chaining is a new terminology introduced with the new composite model. When a Power 
BI report or dataset is based on some other semantic model hosted in AAS or Power BI 
datasets, we create a chain; in other words, chaining is about the dependencies between 
semantic layers used in composite models. So, when we create a dataset on top of other 
datasets (or AAS models), the new dataset is dependent on a series of other datasets.
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Chain length
When we create a chain, the chain's length refers to the number of semantic layers the 
current dataset is dependent on. Let's implement a scenario to better understand the 
terminology.

The business has a semantic model hosted at an AAS dataset that is still under 
development. The AAS developers have a massive backlog and future tasks to implement. 
The business has an urgent requirement for reporting. The business needs to define 
banding to the Unit Price column on the Internet Sales table, as follows:

• Low: When the unit price is smaller than US Dollars (USD) $100

• Medium: When the unit price is between $101 and $1,000

• High: When the unit price is between $1,001 and $3,000

• Very high: When the unit price is greater than $3,001

Let's look at the scenario in more detail. First of all, we have a semantic model in AAS, but 
the developers are too busy with their day-to-day tasks to respond to an urgent request 
from the business. The business can have many urgent requests every day, but our AAS 
developers cannot stop developing in order to answer the business requirements. As a 
Power BI data modeler, we can help to solve this issue very quickly.

The following steps show how to meet the preceding requirement in Power BI Desktop:

1. Select Connect Live when connecting to the AAS instance from Power BI Desktop, 
as illustrated in the following screenshot:

Figure 12.40 – Connecting live to AAS
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2. Click the Model tab to see the current AAS data model, as illustrated in the 
following screenshot:

Figure 12.41 – Current data model in AAS (connection mode: Connect Live)

3. Click the Transform data button from the Home tab, as illustrated in the following 
screenshot. This changes the connection mode from Connect Live to DirectQuery:

Figure 12.42 – Changing the connection mode from Connect Live to  
DirectQuery on top of an AAS model
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4. Click Add a local model, as illustrated in the following screenshot:

Figure 12.43 – Confirming to add a local model

5. After clicking the Add a local model button, an empty Power Query Editor 
window shows up. Close the Power Query Editor window, as illustrated in the 
following screenshot:

Figure 12.44 – Closing the empty Power Query Editor window
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6. Go to the Model view again to see the changes (the tables' color changed from black 
to blue, and the icon for the tables has also changed), as illustrated in the following 
screenshot:

Figure 12.45 – The look and feel of the Model view after turning the connection mode to DirectQuery

7. Switch back to the Report view.

8. Right-click the Internet Sales table and then click New column, as illustrated 
in the following screenshot:



Introduction to composite models     571

Figure 12.46 – Creating a new column when running DirectQuery on an AAS model

9. Use the following Data Analysis Expressions (DAX) expression to create a new 
calculated column:

Unit Price Range Band = 

    SWITCH(

              TRUE()

            , 'Internet Sales'[Unit Price] <= 100, "Low"

            , AND('Internet Sales'[Unit Price] >= 101, 
'Internet Sales'[Unit Price] <= 1000), "Medium"

            , AND('Internet Sales'[Unit Price] >= 1001, 
'Internet Sales'[Unit Price] <= 3000), "High"

            , "Very High"

    )

Figure 12.47 – Creating a Unit Price Range Band calculated column
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10. Create another calculated column using the following DAX expression to sort the 
Unit Price Range Band column:

UnitPriceRangeBandSort = 

    SWITCH(

              TRUE()

            , 'Internet Sales'[Unit Price] <= 100, 1

            , AND('Internet Sales'[Unit Price] >= 101, 
'Internet Sales'[Unit Price] <= 1000), 2

            , AND('Internet Sales'[Unit Price] >= 1001, 
'Internet Sales'[Unit Price] <= 3000), 3

            , 4

    )

Figure 12.48 – Creating a UnitPriceRangeBandSort calculated column

11. Sort the Unit Price Range Band column by the 
UnitPriceRangeBandSort column, as illustrated in the following screenshot:
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Figure 12.49 – Sorting a column by another column

As you can see, the Data view is not available as the dataset is now in DirectQuery 
mode. Therefore, to see the changes we make, we have to use a table visual. The following 
screenshot shows a table visual with the new calculated columns we built:

Figure 12.50 – Testing the results in a table visual when the dataset is in DirectQuery storage mode
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Now that we meet the business requirements we can visualize the data as desired, but the 
last piece of the puzzle is to publish the report to the service. The following screenshot 
shows a lineage view of the report after it is published to the Power BI service:

 

Figure 12.51 – Lineage view of a published report in the Power BI service

Now, let's revisit the new terminologies. We are running DirectQuery on a semantic 
model hosted in AAS from the Chapter 12, Composite Models dataset. 
Therefore, we created a chain. As shown in Figure 12.51, the chain length is 2. If we create 
another dataset on top of the Chapter 12, Composite Models dataset, then the 
chain length is 3.

Note
When writing this book, the maximum chain length allowed is 3; therefore,  
we cannot create a composite model with a chain length of 4.

While the preceding scenario is a simplistic one, I hope it gives you an idea of how to 
use the new composite models. I am sure you can see as many benefits in using the new 
composite model as I do, but keep in mind that you always want to make sure you get 
enough benefits out of it before changing your existing data models' design. 

To learn more about composite models, I encourage you to check the Microsoft 
documentation here: 

https://docs.microsoft.com/en-us/power-bi/connect-data/
desktop-directquery-datasets-azure-analysis-services?WT.mc_
id=5003466

https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-datasets-azure-analysis-services?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-datasets-azure-analysis-services?WT.mc_id=5003466
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-datasets-azure-analysis-services?WT.mc_id=5003466
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Summary
In this chapter, we learned about different types of SCDs. We also learned about OLS in 
Power BI Desktop and Tabular Editor. We now know what dataflows are and in which 
scenarios we can consider using them as our self-service ETL tool. Last, but not least,  
we learned about the new generation of composite models that support DirectQuery with 
AAS and other Power BI datasets.

This is the last chapter of this book, I hope you enjoyed reading it and that you learned 
some new techniques and ideas for dealing with data modeling in Power BI. For more 
details about the topics we discussed in this book—and future updates—keep an eye on 
my website, www.biinsight.com.

Happy data modeling!

http://www.biinsight.com




Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as 
well as industry leading tools to help you plan your personal development and advance 
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos 

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at packt.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters, and receive exclusive discounts and offers on Packt books and 
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com


578     Other Books You May Enjoy

Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Power BI

Greg Deckler

978-1-83864-448-2

• Explore the different features of Power BI to create interactive dashboards

• Use the Query Editor to import and transform data

• Perform simple and complex DAX calculations to enhance analysis

• Discover business insights and tell a story with your data using Power BI

• Explore data and learn to manage datasets, dataflows, and data gateways

• Use workspaces to collaborate with others and publish your reports

https://www.packtpub.com/free-ebook/learn-power-bi/9781838644482


Why subscribe?     579

Microsoft Power BI Quick Start Guide

Devin Knight, Mitchell Pearson, Bradley Schacht, Erin Ostrowsky 

ISBN:  978-1-80056-157-1 

• Connect to data sources using import and DirectQuery options

• Use Query Editor for data transformation and data cleansing processes, including 
writing M and R scripts and dataflows to do the same in the cloud

• Design optimized data models by designing relationships and DAX calculations

• Design effective reports with built-in and custom visuals

• Adopt Power BI Desktop and Service to implement row-level security

• Administer a Power BI cloud tenant for your organization

• Use built-in AI capabilities to enhance Power BI data transformation techniques

• Deploy your Power BI desktop files into the Power BI Report Serve

https://www.packtpub.com/product/microsoft-power-bi-quick-start-guide-second-edition/9781800561571


Mastering Microsoft Power BI

Brett Powell

ISBN: 978-1-78829-723-3

• Build efficient data retrieval and transformation processes with the M Query 
Language

• Design scalable, user-friendly DirectQuery and Import Data Models

• Develop visually rich, immersive, and interactive reports and dashboards

• Maintain version control and stage deployments across development, test, and 
production environments

• Manage and monitor the Power BI Service and the On-Premises Data Gateway

• Develop a fully On-Premise Solution with the Power BI Report Server

• Scale up a Power BI Solution via Power BI Premium Capacity and Migration to  
SQL Server Analysis Services

https://www.packtpub.com/product/mastering-microsoft-power-bi/9781788297233


Leave a review - let other readers know what 
you think
Please share your thoughts on this book with others by leaving a review on the site that 
you bought it from. If you purchased the book from Amazon, please leave us an honest 
review on this book's Amazon page. This is vital so that other potential readers can see 
and use your unbiased opinion to make purchasing decisions, we can understand what 
our customers think about our products, and our authors can see your feedback on the 
title that they have worked with Packt to create. It will only take a few minutes of your 
time, but is valuable to other potential customers, our authors, and Packt. Thank you!





Index

A
aggregation

implementing, at Date level  428
implementing, at Year and 

Month level  436-440
implementing, for non-DirectQuery 

data sources  427
Manage Aggregations feature, using  441
using  426

aggregation, implementing at Date level
control measures, creating 

in base table  432
Internet Sales table, 

summarizing  428, 429
measures, creating in summary 

table  431, 432
relationships, creating  430, 431
summary table, hiding  433-435

artificial intelligence (AI)  206
auto date/time

reducing, by disabling 
model size  417-420

Azure Active Directory (Azure AD)  502
Azure Analysis Services  

(AAS)  92, 174-177, 566
Azure Synapse Analytics  426

B
bidirectional relationship  385
Boyce-Codd normal form  32
Bronze data sources  180
business intelligence (BI)  184

C
calculated columns

avoiding  403-405
calculated table

creating  34-36
creating, in Power BI Desktop  41

calculation groups
DAX functions  490, 491
format string issue, fixing  488, 490
implementing, to handle time 

intelligence  481-487
requisites  479, 480
terminologies  480
testing  487, 488
using  479

carriage return (CR)  153
chief executive officer (CEO)  515
column cardinality  120



584     Index

columns
adding, from examples  209-211
binning  336-340
calculated columns  335
custom column, adding  206- 209
duplicating  211-213
grouping  336-340
merging  204, 20
properties  341-346
splitting, by delimiter  201-204

comma-separated values (CSV) 
file  142, 149-155

Common Data Service (CDS)  92
common data sources

data, obtaining  142
composite keys

handling  355-360
composite models

about  565, 566
chaining  566
chain length  567-574
terminologies  566

computed entity  547
configuration tables

dynamic conditional formatting, 
with measures  396-402

segmentation  393, 394
using  393

connection modes
Connect Live mode  184
data import mode  182
DirectQuery mode  183
working with  181, 182

Connect Live mode
about  184
application  184
limitations  184

Custom Connectors software 
development kit (SDK)  92

Customer Relationship 
Management (CRM)  177

custom functions
about  132-137
recursive functions  138

custom types  101

D
data, obtaining

from AAS  174
from common data sources  142
from CSV file  149-155
from Excel  156-164
from folder  142-149
from OData feed  177-179
from Power BI dataflows  169, 170
from Power BI datasets  164-169
from SQL Server  171, 172
from SSAS  174
from text file  150-155
from text file (TXT)  149
from TSV file  149-155

Data Analysis Expressions (DAX)
about  92, 494, 571
Date and Time dimensions, creating  276
date dimension, generating with  76-78
time dimension, creating  84-87

data cleansing  229
dataflows

about  545
computed entities, creating  560-562
creating  548-551
entities, creating  552-556
exporting  562, 563
importing  564, 565



Index   585

linked entities, creating from 
other dataflows  557-560

terminologies  547
using, scenarios  546

data import mode
about  182
application  182
limitations  182

data modeling
about  56
in Power BI  12
in Power BI Desktop  320

data model layer, Power BI
about  6
Data view  7, 8
Model view  9

data preparation best practices
size of queries, optimizing  312

data preparation considerations
about  288
case sensitivity, appreciating  292
portion of data, loading  288-292
query folding  292

dataset storage mode
about  187, 188
Composite mode/Mixed mode  501
DirectQuery mode  501
Import mode  501
types  187

data source certification
about  180
Bronze data sources  180
Gold data sources  181
Platinum data sources  181
Silver data sources  181

data type conversion
about  192-200, 302
best practices  302-312

Dataverse  92
data visualization layer, Power BI

about  9
Report view  10

date dimension
dealing with  235-238
generating, with DAX  76-78
valid dates, detecting  57-66

Date table
marking, as date table  79-84

DateTime
dealing with  235-238

DateTimeZone
dealing with  236-238

DAX Studio
using  42, 43

Degenerate Dimensions  258
delimiter

used, for splitting column  201-204
denormalization  19-25
Development (Dev)  127
dimensional modeling  16
dimensions and facts

defining  248
identifying  242, 243
linkage, between existing tables  244, 245
lowest required grain of Date and 

Time, searching  246, 247
number of tables, in data source  244
potential dimensions, determining  249
potential facts, determining  249-252

Dimensions tables
creating  252
currency  263
customer  263, 264



586     Index

Date dimension  269-273
geography  253-257
product dimension  259-262
Sales Demographic  265-268
sales order  257-259
Time dimension  273-276

dimension tables  17
DirectQuery mode

about  183
application  183
limitations  183

DirectQuery or Dual storage modes  293
dynamic RLS

implementing  511
implementing, scenarios  511-528

E
Enterprise Resource Planning (ERP)  143
entities  547
Excel  156-164
Excel workbooks  14
extract, transform, and load (ETL)  531

F
Factless Fact tables  377
fact tables

about  17
creating  277- 285

fields
about  332, 547
columns  335
custom formatting  334
data types  332, 333
hierarchies  346, 347
measures  347

Fixed Dimensions  532
foreign key  354

G
gigabyte (GB)  182
globally unique identifier (GUID)  93
Gold data sources  181
Group By

working with  218-220

H
High Availability (HA)  171

I
inactive relationships

dealing with  388
multiple direct relationships, 

between two tables  390-392
reachability, via multiple 

filter paths  388-390
incremental refresh

about  455-457
configuring, in Power BI 

Desktop  457-463
testing  463-466

iterative data modeling approach
about  29
business logic, demonstrating 

in data visualization  31
data modeling  30
data preparation, based on 

business logic  30
information, obtaining from business  30
logic, testing  31
professional data modelers concept  32



Index   587

J
JavaScript Object Notation 

(JSON)  521, 562
joins

FullOuter  227
Inner  227
LeftAnti  227
LeftOuter  227
RightAnti  227
RightOuter  227

L
licensing considerations, Power BI

about  25
calculation groups  27, 28
Dataflows  28
incremental data load  27
individual dataset size, determining  26
shared datasets  28

line feed (LF)  153
linked entity  547

M
machine learning (ML)  206
Manage Aggregations feature

about  426, 427
used, for managing aggregations in 

Power BI Desktop  443-449
used, for testing aggregation  449-455
using  441-443

measures
about  347
explicit measures  351
implicit measures  348-350
textual measures  351, 352

megabytes (MB)  184
model organization

about  406
folders, using  413
insignificant model objects, hiding  406
measure tables, creating  409-413

Multidimensional Expressions 
(MDX)  175

N
naming conventions

for Power BI developers and 
data modelers  314, 315

normal entity  547
Notepad++

download link  153
numbers

extracting, from text  233-235

O
object-level security (OLS)

about  494, 537
implementing  537-540
members, assigning to roles in 

Power BI service  542, 543
roles, assigning in Power BI 

service  543, 544
roles, validating  540-542

OData feed  177-179
on-premises data gateway  558
Open Data Protocol (OData)  14, 177, 288
optimized queries, techniques

query load, disabling  314
summarization (Group by)  313
unnecessary columns and rows, 

removing  312, 313



588     Index

P
Parent-Child hierarchies

about  466-468
depth, identifying  468, 469
levels, creating  470-475

period-over-period calculations
performing  66-76

Platform as a Service (PaaS)  174
Platinum data sources  181
Portable Document Format (PDF) file  142
Power BI

data flow process  11, 12
data modeling  12
efficient data model, building  13-15
licensing considerations  25
Power Query (M) formula language  92

Power BI dataflows  169, 170
Power BI datasets  164-169
Power BI Desktop

calculated tables, creating  41
data modeling  320
incremental refresh, 

configuring  457-463
Microsoft Contoso Sales sample, 

download link  5
URL  4

Power BI layers
about  4
data model layer  6
data preparation layer (Power Query)  6
data visualization layer  9

Power BI Report Server, RLS roles
members, assigning to  499-501

Power BI service, RLS roles
members, assigning to  498

Power Query
about  92
expressions  93, 94
query formula step, creating  93
types  93, 100
values  93, 94
variables  93

Power Query Diagnostics tool  299
Power Query Editor

about  101-103
Advanced Editor  113
Data View pane  109, 110
Queries pane  103
Query Settings pane  106
Status bar  113

Power Query features, for data modelers
about  115
column distribution  120-123
column profile  123
column quality  116, 118, 119

Power Query Online  28, 545
Power Query, types

custom types  101
primitive types  100, 101

Power Query, values
primitive values  94
structured values  95-99

Premium Per User (PPU)  182
primary key  354
primitive types  100, 101
primitive values  94
Production (Prod)  127
Project Web App (PWA)  177



Index   589

Q
queries

about  547
appending  221-224
duplicating  228, 229
merging  224-227
referencing  228, 229

Queries pane, Power Query Editor
about  106
constant values  104
custom functions  103
groups  104-106
query parameters  104
Query Properties  107-112
tables  103

Query Editor
queries, organizing  300-302

query folding
about  292, 293
and data sources  294
best practices  295-299
impact, on data refresh  292
indications  294, 295

query parameters  124-131

R
recursive functions  138
relationship cardinalities

about  360
many-to-many relationships  361-363
one-to-many relationships  361
one-to-one relationships  361

relationships
bidirectional relationships  366-369
cardinalities  360
filter propagation behavior  364, 365

primary keys/foreign keys  354
using  353, 354

report level measures  174
RLS implementation

approaches  502
flow  501, 502

roleplaying dimensions
implementing  475-478

roles
validating  496

row-level security (RLS)
about  494, 495
roles  495
rules  496
validating roles  496, 497

rows
filtering  214-218

S
SAP Business Warehouse (SAP BW)  181
schema modeling

versus transactional modeling  16
segmentation  393
semantic model  13
server-side/client-side data processing  293
Silver data sources  181
slowly changing dimensions (SCDs)

dealing with  530, 531
SCD type 1 (SCD 1)  532
SCD type 2 (SCD 2)  532-536
SCD type zero (SCD 0)  532

Smart Date Key  237
snowflaking  18
SQL Server

about  171, 172
data warehouse  15



590     Index

SQL Server Analysis Services (SSAS) 
about  4, 174, 566
multidimensional model  174, 175
tabular model  174, 175

SQL Server Analysis Services Tabular 
Models (SSAS Tabular)  92

SQL Server Management 
Studio (SSMS)  449

star schema modeling  16
static RLS

implementing  502-511
storage modes

types  185
working with  185, 186

structured values
function value  99
list value  95
record value  96
table value  97-99

subject-matter experts (SMEs)  180
Surrogate Key  532

T
tables

about  320
calculated tables  326-331
featured tables  325
properties  321-324

tab-separated values (TSV) file  149-155
Tabular Editor  350
temporal mechanism  533
temporal tables  533
text

numbers, extracting from  233-235
text file (TXT)  142-155
third normal form  32

time dimension
creating, with DAX  84-87

time intelligence  56
transactional modeling

versus star schema modeling  16
Transact-SQL (T-SQL) script  171

U
Uniform Resource Locator (URL)  178
Universal Time Coordinate (UTC)  238
User Acceptance Testing (UAT)  127
User Principal Name (UPN)  511

V
values

replacing  229-232
virtual tables

about  34
relationships  44-56
results, displaying virtually  41
using, in measure  36-40

X
xVelocity engine  13




	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: 
Data Modeling in Power BI
	Chapter 1: Introduction to 
Data Modeling in Power BI
	Understanding the Power BI layers
	The data preparation layer (Power Query)
	The data model layer
	The data visualization layer
	How data flows in Power BI

	What data modeling means in Power BI
	Semantic model
	Building an efficient data model in Power BI
	Star schema (dimensional modeling) and snowflaking

	Power BI licensing considerations
	Maximum size of individual dataset
	Incremental data load
	Calculation groups
	Shared datasets
	Power BI Dataflows

	The iterative data modeling approach
	Information gathering from the business
	Data preparation based on the business logic
	Data modeling
	Testing the logic
	Demonstrating the business logic in a basic data visualization
	Thinking like a professional data modeler

	Summary

	Chapter 2: Data Analysis eXpressions and Data Modeling
	Understanding virtual tables
	Creating a calculated table
	Using virtual tables in a measure – Part 1 
	Using virtual tables in a measure – Part 2
	Visually displaying the results of virtual tables
	Relationships in virtual tables

	Time intelligence and data modeling
	Detecting valid dates in the date dimension
	Period-over-period calculations
	Generating the date dimension with DAX
	Creating a time dimension with DAX

	Summary

	Section 2: 
Data Preparation in Query Editor
	Chapter 3: Data Preparation in Power Query Editor
	Introduction to the Power Query M formula language in Power BI
	Power Query is CaSe-SeNsItIvE
	Queries
	Expressions
	Values
	Types

	Introduction to Power Query Editor
	Queries pane
	Query Settings pane
	Data View pane
	Status bar
	Advanced Editor

	Introduction to Power Query features for data modelers
	Column quality
	Column distribution
	Column profile

	Understanding query parameters 
	Understanding custom functions
	Recursive functions

	Summary

	Chapter 4: Getting Data from Various Sources
	Getting data from common data sources
	Folder
	CSV/Text/TSV
	Excel
	Power BI datasets
	Power BI dataflows
	SQL Server
	SQL Server Analysis Services and Azure Analysis Services 
	OData Feed

	Understanding data source certification 
	Bronze
	Silver
	Gold/Platinum

	Working with connection modes
	Data Import
	DirectQuery
	Connect Live

	Working with storage modes
	Understanding dataset storage modes
	Summary

	Chapter 5: Common Data Preparation Steps
	Data type conversion
	Splitting column by delimiter
	Merging columns
	Adding a custom column
	Adding column from examples
	Duplicating a column
	Filtering rows
	Working with Group By
	Appending queries
	Merging queries
	Duplicating and referencing queries
	Replacing values
	Extracting numbers from text
	Dealing with Date, DateTime, and DateTimeZone
	Summary

	Chapter 6: Star Schema Preparation in Power Query Editor
	Identifying dimensions and facts
	Number of tables in the data source
	The linkages between existing tables
	Finding the lowest required grain of Date and Time
	Defining dimensions and facts

	Creating Dimensions tables 
	Geography 
	Sales order
	Product
	Currency
	Customer
	Sales Demographic
	Date 
	Time 
	Creating Date and Time dimensions – Power Query versus DAX

	Creating fact tables
	Summary

	Chapter 7: Data Preparation Common Best Practices
	General data preparation considerations
	Consider loading a proportion of data while connected to the OData data source
	Appreciating case sensitivity in Power Query saves you from dealing with issues in data modeling
	Be mindful of query folding and its impact on data refresh
	Organizing queries in Query Editor

	datatype conversion
	Data conversion can affect data modeling
	Include the datatype conversion in a step when possible
	Consider having only one datatype conversion step

	Optimizing the size of queries
	Removing unnecessary columns and rows
	Summarization (Group by)
	Disabling query load

	Naming conventions
	Summary

	Section 3: 
Data Modeling
	Chapter 8: Data Modeling Components
	Data modeling in Power BI Desktop
	Understanding tables 
	Table properties
	Featured tables
	Calculated tables

	Understanding fields
	Data types
	Custom formatting
	Columns
	Hierarchies
	Measures

	Using relationships
	Primary keys/foreign keys 
	Handling composite keys
	Filter propagation behavior
	Bidirectional relationships

	Summary

	Chapter 9: Star Schema and Data Modeling Common Best Practices
	Dealing with many-to-many relationships
	Many-to-many relationships using a bridge table
	Hiding the bridge table

	Being cautious with bidirectional relationships
	Dealing with inactive relationships
	Reachability via multiple filter paths
	Multiple direct relationships between two tables

	Using configuration tables
	Segmentation
	Dynamic conditional formatting with measures

	Avoiding calculated columns when possible
	Organizing the model
	Hiding insignificant model objects
	Creating measure tables
	Using folders

	Reducing model size by disabling auto date/time
	Summary

	Section 4: 
Advanced Data Modeling
	Chapter 10: Advanced Data Modeling Techniques
	Using aggregations
	Implementing aggregations for non-DirectQuery data sources
	Using the Manage Aggregations feature

	Incremental refresh
	Configuring incremental refresh in Power BI Desktop
	Testing the incremental refresh

	Understanding Parent-Child hierarchies
	Identifying the depth of the hierarchy
	Creating hierarchy levels

	Implementing roleplaying dimensions
	Using calculation groups
	Requirements
	Terminology
	Implementing calculation groups to handle 
time intelligence
	Testing calculation groups
	DAX functions for calculation groups

	Summary

	Chapter 11: Row-Level Security
	What RLS means in data modeling
	What RLS is not
	RLS terminologies
	Assigning members to roles in the Power BI service
	Assigning members to roles in Power BI Report Server

	RLS implementation flow
	Common RLS implementation approaches
	Implementing static RLS
	Implementing dynamic RLS

	Summary

	Chapter 12: Extra Options and Features Available for Data Modeling
	Dealing with SCDs
	SCD type zero (SCD 0)
	SCD type 1 (SCD 1)
	SCD type 2 (SCD 2)

	Introduction to OLS
	Implementing OLS
	Validating roles
	Assigning members to roles in the Power BI service
	Validating roles in the Power BI service

	Introduction to dataflows
	Scenarios for using dataflows
	Dataflow terminologies
	Creating dataflows

	Introduction to composite models
	New terminologies

	Summary

	About Packt
	Other Books You May Enjoy
	Index



